Note: This is a working paper which will be expanded/updated frequently. All suggestions for improvement are welcome. The directory gifi.stat.ucla.edu/fStress has a pdf version, the bib file, the complete Rmd file with the code chunks, and the R and C source code.

# 1 Introduction

The multidimensional scaling (MDS) loss function fStress (Groenen, De Leeuw, and Mathar (1995)) is defined as $$$\label{E:fstress} \sigma(x):=\mathop{\sum\sum}_{1\leq i<j\leq n}w_{ij}(\delta_{ij}-f(x'A_{ij}x))^2$$$

for some real-valued $$f$$. The $$w_{ij}$$ are positive weights, the $$\delta_{ij}$$ are dissimilarities. This does not necessarily imply that they are actual dissimilarity judgments or measurements, they can be arbitrary transformations of such judgments or measurements as well. Both $$w_{ij}$$ and $$\delta_{ij}$$ are fixed and known numbers, the $$A_{ij}$$ are fixed and known symmetric matrices. Note there is no constraint that either the dissimilarities $$\delta_{ij}$$ or the fDistances $$f(x'A_{ij}x)$$ are non-negative, or that $$f$$ is increasing. Thus minimizing fStress can also be used, for example, to fit fDistances to similarities.

Our notation is somewhat different from the standard MDS notation, so let’s make some translations. We use $$x=\mathbf{vec}(X)$$, with $$X$$ the MDS configuration of $$n$$ points in $$p$$ dimensions. If we define $$\nu(i,s)=(s-1)*n+i$$, then $$\{X\}_{is}=x_{\nu(i,s)}$$. For most of our formulas it is easier to work with vectors than it is to work with matrices, so we will use $$x$$ instead of $$X$$. It is also helpful for our software development, since matrices and higher-dimensional arrays are stored as vectors anyway.

The $$np\times np$$ matrices $$A_{ij}$$ are defined using unit vectors $$e_i$$ and $$e_j$$ of length $$n$$, all zero except for one element that is equal to one. If you like, the $$e_i$$ are the columns of the identity matrix. We first define $$n\times n$$ matrices $$\mathcal{A}_{ij}$$ by $\mathcal{A}_{ij}:=(e_i-e_j)(e_i-e_j)',$ and use $$p$$ copies of $$\mathcal{A}_{ij}$$ to make the direct sum $A_{ij}:=\underbrace{\mathcal{A}_{ij}\oplus\cdots\oplus\mathcal{A}_{ij}}_{p\text{ times}}.$ Thus the squared Euclidean distance between point $$i$$ and $$j$$ in the configuration $$X$$ is $$\mathbf{tr}\ X'\mathcal{A}_{ij}X=x'A_{ij}x$$.

## 1.1 fDistances

An fDistance is a function of the form $$g(x)=f(x'Ax)$$ for some real-valued $$f$$. Thus minimzinf fStress is fitting fDistances to dissimilarities, using weighted least squares. fStress properly generalizes the usual stress function initially proposed by Kruskal (1964a) and Kruskal (1964b), which uses $$g(x)=\sqrt{x'Ax}$$. The sStress loss function of Takane, Young, and De Leeuw (1977) uses the identity $$g(x)=x'Ax$$, and the lStress function of Ramsay (1977) and Ramsay (1982) uses the logarithm $$g(x)=\log(x'Ax)$$.

For $$g$$ a general power, i.e. $$g(x)=(x'Ax)^r$$, we get rStress, sometimes also known as qStress, studied in a host of (unpublished, my fault) papers by De Leeuw, Groenen, and Pietersz (2006), Groenen and De Leeuw (2010), De Leeuw (2014), De Leeuw, Groenen, and Mair (2016c), De Leeuw, Groenen, and Mair (2016a), De Leeuw, Groenen, and Mair (2016d), De Leeuw, Groenen, and Mair (2016b). URL’s and/or DOI’s are in the references section.

In Groenen, De Leeuw, and Mathar (1995) first and second partials of fStress are given. We add third and fourth order partials. It is unclear if the higher order partials have any practical applications. In De Leeuw, Groenen, and Mair (2016d) there are some applications of the second derivatives of rStress. We briefly mention some possible applications of our higher order partials to majorization (a.k.a. MM) algorithms.

# 2 Partials, Partials Everywhere

## 2.1 Derivatives of fDistances

We give expressions for the first four derivatives of an arbitrary, but sufficiently many times differentiable, fDistance. In fact, we first address a more general problem, which in its turn is a special case of the first four terms of the multivariate Faà di Bruno formula (see, for instance, Constantine and Savits (1996), Leipnik and Pearce (2007)). We then apply those results to fDistances.

## 2.2 Faà di Bruno

Suppose $$h:\mathcal{R}^n\rightarrow\mathcal{R}$$, $$g:\mathcal{R}^n\rightarrow\mathcal{R}$$, and $$f:\mathcal{R}\rightarrow\mathcal{R}$$, such that $$h(x)=f(g(x))$$. We will give expressions for the partials of $$h$$ of orders up to four. Our formulas separate the parts that depend on $$f$$ from the parts that depend only on $$g$$.

### 2.2.1 First

The first partials can be written in the form $\mathcal{D}_ih(x)=\mathcal{D}f(g(x))h_{11}(x),$ with $h_{11}(x):=\mathcal{D}_ig(x).$

### 2.2.2 Second

Next $\mathcal{D}_{ij}h(x)=\mathcal{D}f(g(x))h_{21}(x)+\mathcal{D}^2f(g(x))h_{22}(x),$ \begin{align*} h_{21}(x)&:=\mathcal{D}_{ij}g(x),\\ h_{22}(x)&:=\mathcal{D}_ig(x)\mathcal{D}_jg(x). \end{align*}

### 2.2.3 Third

Next $\mathcal{D}_{ijk}h(x)=\mathcal{D}f(g(x))h_{31}(x)+\mathcal{D}^2f(g(x))h_{32}(x)+\mathcal{D}^3f(g(x))h_{33}(x),$ with \begin{align*} h_{31}(x)&:=\mathcal{D}_{ijk}g(x),\\ h_{32}(x)&:=\mathcal{D}_jg(x)\mathcal{D}_{ik}g(x)+\mathcal{D}_ig(x)\mathcal{D}_{jk}g(x)+\mathcal{D}_kg(x)\mathcal{D}_{ij}g(x),\\ h_{33}(x)&:=\mathcal{D}_ig(x)\mathcal{D}_jg(x)\mathcal{D}g_k(x). \end{align*}

### 2.2.4 Fourth

And finally $\mathcal{D}_{ijkl}h(x)=\mathcal{D}f(g(x))h_{41}(x)+\mathcal{D}^2f(g(x))h_{42}(x)+\mathcal{D}^3f(g(x))h_{43}(x)+\mathcal{D}^4f(g(x))h_{44}(x),$ with \begin{align*} h_{41}(x)&:=\mathcal{D}_{ijkl}g(x),\\ h_{42}(x)&:=\mathcal{D}_{jl}g(x)\mathcal{D}_{ik}g(x)+\mathcal{D}_{il}g(x)\mathcal{D}_{jk}g(x)\\ &+\mathcal{D}_jg(x)\mathcal{D}_{ikl}g(x)+\mathcal{D}_ig(x)\mathcal{D}_{jkl}g(x)+\mathcal{D}_kg(x)\mathcal{D}_{ijl}g(x)+\mathcal{D}_lg(x)\mathcal{D}_{ijk}g(x),\\ h_{43}(x)&:=\mathcal{D}_{il}g(x)\mathcal{D}_jg(x)\mathcal{D}g_k(x)+\mathcal{D}_ig(x)\mathcal{D}_{jl}g(x)\mathcal{D}g_k(x)+\mathcal{D}_ig(x)\mathcal{D}_jg(x)\mathcal{D}_{kl}g(x)\\ &+\mathcal{D}_jg(x)\mathcal{D}_{ik}g(x)\mathcal{D}_lg(x)+\mathcal{D}_ig(x)\mathcal{D}_{jk}g(x)\mathcal{D}_lg(x)+\mathcal{D}_kg(x)\mathcal{D}_{ij}g(x)\mathcal{D}_lg(x),\\ h_{44}(x)&=\mathcal{D}_ig(x)\mathcal{D}_jg(x)\mathcal{D}_kg(x)\mathcal{D}g_l(x). \end{align*}

If $$g(x)=x'Ax$$ for some symmetric $$A$$, as it is in MDS, then $$\mathcal{D}_ig(x)=2\{Ax\}_i$$ and $$\mathcal{D}_{ij}g(x)=2a_{ij}$$. Also $$\mathcal{D}_{ijk}g(x)=0$$ and $$\mathcal{D}_{ijkl}g(x)=0$$. Note that we write $$\{Ax\}_i$$ for element $$i$$ of the vector $$Ax$$. Also note that the results in this section apply for any symmetric matrix $$A$$, even if it is not positive-semidefinite.

For the first partials $\mathcal{D}_ih(x)=2\mathcal{D}f(x'Ax)\{Ax\}_i,$ for the second partials $\mathcal{D}_{ij}h(x)=2\mathcal{D}f(x'Ax)a_{ij}+4\mathcal{D}^2f(x'Ax))\{Ax\}_i\{Ax\}_j,$ and for the third partials $\mathcal{D}_{ijk}h(x)=4\mathcal{D}^2f(x'Ax)\{\{Ax\}_ia_{jk}+\{Ax\}_ja_{ik}+\{Ax\}_ka_{ij}\}+8\mathcal{D}^3f(x'Ax)\{Ax\}_i\{Ax\}_j\{Ax\}_k.$ For the fourth partials we again write $\mathcal{D}_{ijkl}h(x)=\mathcal{D}f(g(x))h_{41}(x)+\mathcal{D}^2f(g(x))h_{42}(x)+\mathcal{D}^3f(g(x))h_{43}(x)+\mathcal{D}^4f(g(x))h_{44}(x),$ and now we have \begin{align*} h_{41}(x)&:=0,\\ h_{42}(x)&:=4\{a_{jl}a_{ik}+a_{il}a_{jk}\},\\ h_{43}(x)&:=8\{a_{il}\{Ax\}_j\{Ax\}_k+a_{jl}\{Ax\}_i\{Ax\}_k+a_{kl}\{Ax\}_i\{Ax\}_j+\\ &+a_{ik}\{Ax\}_j\{Ax\}_l+a_{jk}\{Ax\}_i\{Ax\}_l+a_{ij}\{Ax\}_k\{Ax\}_l\},\\ h_{44}(x)&:=16\{Ax\}_i\{Ax\}_j\{Ax\}_k\{Ax\}_l. \end{align*}

## 2.3 Derivatives of Stress

If we expand fStress we find, using notation used initially by De Leeuw (1977), $\sigma(x)=C-\rho(x)+\eta(x),$ with $\rho(x):=\mathop{\sum\sum}_{1\leq i<j\leq n}w_{ij}\delta_{ij}f(x'A_{ij}x),$ $\eta(x):=\frac12\mathop{\sum\sum}_{1\leq i<j\leq n}w_{ij}f^2(x'A_{ij}x),$ and with $$C$$ a constant not depending on $$x$$.

Clearly both $$\rho$$ and $$\eta^2$$ are weighted sums of fDistances, where the fDistances in $$\eta$$ are the squares of the fDistances in $$\rho$$. Thus the partial derivatives are also weighted sums of the partial derivatives of the fDistances. Thus the previous formulas give us all we need.

# 3 Implementation

As in many of our previous recent reports, most of the computing is done in a C dialect conforming with the .C() interface of R, but also fairly easible integrated into C programs that do not depend on the presence of R.

At the moment we have implemented the following fDistances, which all are arbitrary powers of five base functions. \begin{align} h(x)&=\{\log(x'Ax)\}^p,\\ h(x)&=\{x'Ax\}^p,\\ h(x)&=\{\exp(x'Ax)\}^p,\\ h(x)&=\left\{\frac{x'Ax}{1+x'Ax}\right\}^p,\\ h(x)&=\{\log(1+x'Ax)\}^p. \end{align}

There are helper functions in C which evaluate the base functions and all four of their partials at a given point. There is also R glue for each of the helper functions, and the R function checkD() uses the symbolic differentiation capabilities of R to check the helper functions.

Partial derivatives of fDistances are evaluated using the multivariate Faà di Bruno results in the previous sections for the quadratic case with $$g(x)=x'Ax$$. The derivatives of the powers of the five base functions are computed from the derivatives of the base functions, using the C function fStressPower(), which implements a univariate version of Faà di Bruno. Since our formulas cover arbitrary powers of the five base functions they apply to both the fDistances in $$\rho$$ and their squares in $$\eta$$.

The two basic C functions are faa_di_bruno() and fStressFaaDiBruno(). The first computes the first four partials of $$f(x'Ax)$$ for general $$A$$, the second those of $$f(x'Ax)$$ for the $$A_{ij}$$ used in MDS. In the second case we do not have to store $$A$$ because there is a simple recipe to compute its elements whenever they are needed. Our C implementation is far from optimal, because we store full multidimensional arrays of partials without using their super-symmetry. We also fill the arrays with full loops over all indices, without using the sparseness of the $$A_{ij}$$.

The R function checkF() checks the faa_di_bruno() derivatives using numeric differentiation (Gilbert and Varadhan (2016)), and the R function faaR() provides the glue for faa_di_bruno.

Finally there is the C function fStressPartials(), which makes the weighted sum of the partials of the fDistances. It has the R glue function fStressR(), and for the gradient and the Hessian it is checked against numerical derivatives by checkS(). In our examples the first and second partials from fStressR() are the same as those from the numDeriv package. Since the higher derivatives of the base functions and their powers given the same results as those from deriv() and D(), we can be reasonable sure that the higher derivatives are also correct. Checking this, and possibly improving the efficiency of the code, are topics for further research (and for a future version of this paper).

# 4 Discussion

There is clearly some merit to the idea of fDistances, and to the general form of fStress. It covers many of the previous forms of least squares MDS. The first and second partials are not new. They can be used in gradient, Gauss-Newton, and Newton-Raphson minimization algorithms and to draw pseudo-confidence ellipsoids (De Leeuw (2017)). The third and fourth order partials allow for a better local approximation of fStress, which at least theoretically can lead to faster algorithms and more precise confidence regions.

In future research we will try to exploit convexity and concavity, and bounds on the derivatives, of fDistances and the implications for majorization algorithms to minimize fStress.

# 5 Appendix: Code

## 5.1 R Code

### 5.1.1 fStress.R

dyn.load("fStress.so")

fLogR <- function (x) {
h <-
.C(
"fStressLog",
x = as.double (x),
f0 = as.double(0),
f1 = as.double(0),
f2 = as.double(0),
f3 = as.double(0),
f4 = as.double(0)
)
return (list (
x = h$x, f0 = h$f0,
f1 = h$f1, f2 = h$f2,
f3 = h$f3, f4 = h$f4
))
}

fIdeR <- function (x) {
h <-
.C(
"fStressIdentity",
x = as.double (x),
f0 = as.double(0),
f1 = as.double(0),
f2 = as.double(0),
f3 = as.double(0),
f4 = as.double(0)
)
return (list (
x = h$x, f0 = h$f0,
f1 = h$f1, f2 = h$f2,
f3 = h$f3, f4 = h$f4
))
}

fExpR <- function (x) {
h <-
.C(
"fStressExponent",
x = as.double (x),
f0 = as.double(0),
f1 = as.double(0),
f2 = as.double(0),
f3 = as.double(0),
f4 = as.double(0)
)
return (list (
x = h$x, f0 = h$f0,
f1 = h$f1, f2 = h$f2,
f3 = h$f3, f4 = h$f4
))
}

fBndR <- function (x) {
h <-
.C(
"fStressBounded",
x = as.double (x),
f0 = as.double(0),
f1 = as.double(0),
f2 = as.double(0),
f3 = as.double(0),
f4 = as.double(0)
)
return (list (
x = h$x, f0 = h$f0,
f1 = h$f1, f2 = h$f2,
f3 = h$f3, f4 = h$f4
))
}

fLgoR <- function (x) {
h <-
.C(
"fStressLogPlusOne",
x = as.double (x),
f0 = as.double(0),
f1 = as.double(0),
f2 = as.double(0),
f3 = as.double(0),
f4 = as.double(0)
)
return (list (
x = h$x, f0 = h$f0,
f1 = h$f1, f2 = h$f2,
f3 = h$f3, f4 = h$f4
))
}

fPowR <- function (x, fNumber, pPower) {
h <-
.C(
"fStressPower",
x = as.double(x),
fNumber = as.integer (fNumber),
ppower = as.double (pPower),
f0 = as.double(0),
f1 = as.double(0),
f2 = as.double(0),
f3 = as.double(0),
f4 = as.double(0)
)
return (list (
x = h$x, f0 = h$f0,
f1 = h$f1, f2 = h$f2,
f3 = h$f3, f4 = h$f4
))
}

faaR <- function(x, fNumber, pPower, a) {
n <- length (x)
h <-
.C(
"faa_di_bruno",
x = as.double(x),
n = as.integer(n),
fNumber = as.integer(fNumber - 1),
pPower = as.double(pPower),
a = as.double(a),
ax = as.double (rep(0, n)),
gx = as.double(0),
h0 = as.double (0),
h1 = as.double(rep (0, n)),
h2 = as.double (rep(0, n ^ 2)),
h3 = as.double (rep (0, n ^ 3)),
h4 = as.double (rep(0, n ^ 4))
)
return (list (
gx = h$gx, h0 = h$h0,
h1 = h$h1, h2 = h$h2,
h3 = h$h3, h4 = h$h4
))
}

fStressR <- function (x, w, delta, p, fNumber, pPower) {
r <- length (x)
m <- length (w)
n <- round (r / p)
hh <-
.C(
"fStressPartials",
x = as.double (x),
w = as.double (w),
delta = as.double (delta),
n = as.integer (n),
p = as.integer (p),
fNumber = as.integer (fNumber - 1),
pPower = as.double (pPower),
stress = as.double (0),
qdist = as.double (rep(0, m)),
fdist = as.double (rep(0, m)),
h1 = as.double (rep(0, r)),
h2 = as.double (rep(0, r ^ 2)),
h3 = as.double (rep(0, r ^ 3)),
h4 = as.double (rep(0, r ^ 4))
)
return (
list(
x = x,
stress = hh$stress, qdist = hh$qdist,
fdist = hh$fdist, h1 = hh$h1,
h2 = hh$h2, h3 = hh$h3,
h4 = hh\$h4
)
)
}

### 5.1.2 check.R

library("numDeriv")

fList <- list (function (x)
log(x),
function (x)
x,
function (x)
exp(x),
function (x)
x / (1 + x),
function (x)
log (1 + x))

checkD <- function (expr, order, value) {
DD <- function(expr, name, order = 1) {
if (order < 1)
stop("'order' must be >= 1")
if (order == 1)
D(expr, name)
else
DD(D(expr, name), name, order - 1)
}
dd <- DD(expr, "x", order)
x <- value
return (eval (dd))
}

checkF <- function (x, fNumber, pPower, a) {
f <- function (x, fNumber, pPower, a) {
g <- sum (a * outer (x, x))
return ((fList[[fNumber]](g)) ^ pPower)
}
h0 <- f(x, fNumber, pPower, a)
x,
fNumber = fNumber,
pPower = pPower,
a = a)
h2 <- hessian (f,
x,
fNumber = fNumber,
pPower = pPower,
a = a)
return (list (
x = x,
h0 = h0,
h1 = h1,
h2 = h2
))
}

checkS <- function (x, w, delta, p, fNumber, pPower) {
f <- function (x, w, delta, p, fNumber, pPower) {
r <- length (x)
n <- round (r / p)
d <- as.vector(dist(matrix(x, n, p))) ^ 2
e <- fList[[fNumber]](d) ^ pPower
sum (w * (delta - e) ^ 2) / 2
}
h0 <-
f(
x,
w = w,
delta = delta,
p = p,
fNumber = fNumber,
pPower = pPower
)
h1 <-
f,
x,
w = w,
delta = delta,
p = p,
fNumber = fNumber,
pPower = pPower
)
h2 <-
hessian (
f,
x,
w = w,
delta = delta,
p = p,
fNumber = fNumber,
pPower = pPower
)
return (list (
x = x,
h0 = h0,
h1 = h1,
h2 = h2
))
}

## 5.2 C Code

### 5.2.1 fStress.h

#ifndef FSTRESS_H
#define FSTRESS_H

#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>

static inline int VINDEX(const int);
static inline int MINDEX(const int, const int, const int);
static inline int SINDEX(const int, const int, const int);
static inline int TINDEX(const int, const int, const int);
static inline int AINDEX(const int, const int, const int, const int, const int);
static inline int CINDEX(const int, const int, const int, const int, const int, const int, const int);

static inline double SQUARE(const double);
static inline double THIRD(const double);
static inline double FOURTH(const double);
static inline double FIFTH(const double);

static inline double MAX(const double, const double);
static inline double MIN(const double, const double);
static inline int IMIN(const int, const int);
static inline int IMAX(const int, const int);
static inline int IMOD(const int, const int);

static inline int ASEEK(const int, const int, const int, const int, const int, const int);

static inline int VINDEX(const int i) { return i - 1; }

static inline int MINDEX(const int i, const int j, const int n) {
return (i - 1) + (j - 1) * n;
}

static inline int AINDEX(const int i, const int j, const int k, const int n,
const int m) {
return (i - 1) + (j - 1) * n + (k - 1) * n * m;
}

static inline int CINDEX(const int i, const int j, const int k, const int l, const int n,
const int m, const int r) {
return (i - 1) + (j - 1) * n + (k - 1) * n * m + (l - 1) * n * m * r;
}

static inline int SINDEX(const int i, const int j, const int n) {
return ((j - 1) * n) - (j * (j - 1) / 2) + (i - j) - 1;
}

static inline int TINDEX(const int i, const int j, const int n) {
return ((j - 1) * n) - ((j - 1) * (j - 2) / 2) + (i - (j - 1)) - 1;
}

static inline double SQUARE(const double x) { return x * x; }
static inline double THIRD(const double x) { return x * x * x; }
static inline double FOURTH(const double x) { return x * x * x * x; }
static inline double FIFTH(const double x) { return x * x * x * x * x; }

static inline double MAX(const double x, const double y) {
return (x > y) ? x : y;
}

static inline double MIN(const double x, const double y) {
return (x < y) ? x : y;
}

static inline int IMAX(const int x, const int y) { return (x > y) ? x : y; }

static inline int IMIN(const int x, const int y) { return (x < y) ? x : y; }

static inline int IMOD(const int x, const int y) {
return (((x % y) == 0) ? y : (x % y));
}

static inline int ASEEK(const int n, const int p, const int u, const int v, const int i, const int j) {
int value = 0;
if (abs (i - j) < n) {
for (int s = 1; s <= p; s++) {
int k = (s - 1) * n;
if ((i == (u + k)) && (j == (u + k))) {
value = 1;
}
if ((i == (u + k)) && (j == (v + k))) {
value = -1;
}
if ((i == (v + k)) && (j == (u + k))) {
value = -1;
}
if ((i == (v + k)) && (j == (v + k))) {
value = 1;
}
}
}
return (value);
}

#endif /* FSTRESS_H */

### 5.2.2 fStress.c

#include "fStress.h"

void fStressLog(const double *x, double *f0, double *f1, double *f2, double *f3,
double *f4) {
double xx = *x;
*f0 = log(xx);
*f1 = 1 / xx;
*f2 = -1 / SQUARE(xx);
*f3 = 2 / THIRD(xx);
*f4 = -6 / FOURTH(xx);
return;
}

void fStressIdentity(const double *x, double *f0, double *f1, double *f2,
double *f3, double *f4) {
double xx = *x;
*f0 = xx;
*f1 = 1.0;
*f2 = 0.0;
*f3 = 0.0;
*f4 = 0.0;
return;
}

void fStressExponent(const double *x, double *f0, double *f1, double *f2,
double *f3, double *f4) {
double xx = *x;
*f0 = exp(xx);
*f1 = exp(xx);
*f2 = exp(xx);
*f3 = exp(xx);
*f4 = exp(xx);
return;
}

void fStressBounded(const double *x, double *f0, double *f1, double *f2,
double *f3, double *f4) {
double xx = *x, xz = 1.0 + xx;
*f0 = xx / xz;
*f1 = 1.0 / SQUARE(xz);
*f2 = -2.0 / THIRD(xz);
*f3 = 6.0 / FOURTH(xz);
*f4 = -24.0 / FIFTH(xz);
return;
}

void fStressLogPlusOne(const double *x, double *f0, double *f1, double *f2,
double *f3, double *f4) {
double xx = *x, xp = 1.0 + xx, xz = 1 / xp;
*f0 = log(xp);
*f1 = xz;
*f2 = -SQUARE(xz);
*f3 = 2.0 * THIRD(xz);
*f4 = -6.0 * FOURTH(xz);
}

void (*fStressTable[5])(const double *, double *, double *, double *, double *,
double *) = {fStressLog, fStressIdentity,
fStressExponent, fStressBounded,
fStressLogPlusOne};

void fStressPower(const double *x, const int *fNumber, const double *ppar,
double *g0, double *g1, double *g2, double *g3, double *g4) {
double f0, f1, f2, f3, f4, pp = *ppar;
(void)fStressTable[*fNumber](x, &f0, &f1, &f2, &f3, &f4);
*g0 = pow(f0, pp);
*g1 = pp * f1 * pow(f0, pp - 1.0);
*g2 = pp * (pp - 1.0) * pow(f0, pp - 2.0) * SQUARE(f1);
*g2 += pp * pow(f0, pp - 1.0) * f2;
*g3 = pp * (pp - 1.0) * (pp - 2.0) * pow(f0, pp - 3.0) * THIRD(f1);
*g3 += 3.0 * pp * (pp - 1.0) * pow(f0, pp - 2.0) * f1 * f2;
*g3 += pp * pow(f0, pp - 1.0) * f3;
*g4 = pp * (pp - 1.0) * (pp - 2.0) * (pp - 3.0) * pow(f0, pp - 4.0) *
FOURTH(f1);
*g4 += 6.0 * pp * (pp - 1.0) * (pp - 2.0) * pow(f0, pp - 3.0) * SQUARE(f1) *
f2;
*g4 += 4.0 * pp * (pp - 1.0) * pow(f0, pp - 2.0) * (f1 * f3);
*g4 += 3.0 * pp * (pp - 1.0) * pow(f0, pp - 2.0) * SQUARE(f2);
*g4 += pp * pow(f0, pp - 1.0) * f4;
}

void fStressFaaDiBruno(const double *x, const int *n, const int *p,
const int *u, const int *v, const int *fNumber,
const double *par, double *ax, double *gx, double *h0,
double *h1, double *h2, double *h3, double *h4) {
double f0, f1, f2, f3, f4;
int nn = *n, uu = *u, vv = *v, pp = *p, np = nn * pp;
*gx = 0.0;
for (int i = 1; i <= np; i++) {
ax[VINDEX(i)] = 0.0;
}
for (int s = 1; s <= pp; s++) {
double xuv = x[MINDEX(uu, s, nn)] - x[MINDEX(vv, s, nn)];
ax[MINDEX(uu, s, nn)] = xuv;
ax[MINDEX(vv, s, nn)] = -xuv;
}
for (int i = 1; i <= np; i++) {
*gx += ax[VINDEX(i)] * x[VINDEX(i)];
}
(void)fStressPower(gx, fNumber, par, &f0, &f1, &f2, &f3, &f4);
*h0 = f0;
for (int i = 1; i <= np; i++) {
h1[VINDEX(i)] = 2.0 * f1 * ax[VINDEX(i)];
}
for (int i = 1; i <= np; i++) {
for (int j = 1; j <= np; j++) {
h2[MINDEX(i, j, np)] = 2.0 * f1 * ASEEK(nn, pp, uu, vv, i, j) +
4.0 * f2 * ax[VINDEX(i)] * ax[VINDEX(j)];
}
}
for (int i = 1; i <= np; i++) {
for (int j = 1; j <= np; j++) {
for (int k = 1; k <= np; k++) {
h3[AINDEX(i, j, k, np, np)] =
4.0 * f2 *
((ax[VINDEX(i)] * ASEEK(nn, pp, uu, vv, j, k)) +
(ax[VINDEX(j)] * ASEEK(nn, pp, uu, vv, i, k)) +
(ax[VINDEX(k)] * ASEEK(nn, pp, uu, vv, i, j)));
h3[AINDEX(i, j, k, nn, nn)] +=
8.0 * f3 * ax[VINDEX(i)] * ax[VINDEX(j)] * ax[VINDEX(k)];
}
}
}
for (int i = 1; i <= np; i++) {
for (int j = 1; j <= np; j++) {
for (int k = 1; k <= np; k++) {
for (int l = 1; l <= np; l++) {
h4[CINDEX(i, j, k, l, np, np, np)] =
4.0 * f2 *
(ASEEK(nn, pp, uu, vv, j, l) *
ASEEK(nn, pp, uu, vv, i, k) +
ASEEK(nn, pp, uu, vv, i, l) *
ASEEK(nn, pp, uu, vv, j, k));
h4[CINDEX(i, j, k, l, nn, nn, nn)] +=
16.0 * f4 * ax[VINDEX(i)] * ax[VINDEX(j)] *
ax[VINDEX(k)] * ax[VINDEX(l)];
h4[CINDEX(i, j, k, l, nn, nn, nn)] +=
8.0 * f3 * ASEEK(nn, pp, uu, vv, i, l) * ax[VINDEX(j)] *
ax[VINDEX(k)];
h4[CINDEX(i, j, k, l, nn, nn, nn)] +=
8.0 * f3 * ASEEK(nn, pp, uu, vv, j, l) * ax[VINDEX(i)] *
ax[VINDEX(k)];
h4[CINDEX(i, j, k, l, nn, nn, nn)] +=
8.0 * f3 * ASEEK(nn, pp, uu, vv, k, l) * ax[VINDEX(j)] *
ax[VINDEX(j)];
h4[CINDEX(i, j, k, l, nn, nn, nn)] +=
8.0 * f3 * ASEEK(nn, pp, uu, vv, i, k) * ax[VINDEX(j)] *
ax[VINDEX(l)];
h4[CINDEX(i, j, k, l, nn, nn, nn)] +=
8.0 * f3 * ASEEK(nn, pp, uu, vv, j, k) * ax[VINDEX(i)] *
ax[VINDEX(l)];
h4[CINDEX(i, j, k, l, nn, nn, nn)] +=
8.0 * f3 * ASEEK(nn, pp, uu, vv, i, j) * ax[VINDEX(k)] *
ax[VINDEX(l)];
}
}
}
}
return;
}

void faa_di_bruno(const double *x, const int *n, const int *fNumber,
const double *par, const double *a, double *ax, double *gx,
double *h0, double *h1, double *h2, double *h3, double *h4) {
double f0, f1, f2, f3, f4;
int nn = *n;
*gx = 0.0;
for (int i = 1; i <= nn; i++) {
ax[VINDEX(i)] = 0.0;
for (int j = 1; j <= nn; j++) {
ax[VINDEX(i)] += a[MINDEX(i, j, nn)] * x[VINDEX(j)];
}
*gx += ax[VINDEX(i)] * x[VINDEX(i)];
}
(void)fStressPower(gx, fNumber, par, &f0, &f1, &f2, &f3, &f4);
*h0 = f0;
for (int i = 1; i <= nn; i++) {
h1[VINDEX(i)] = 2.0 * f1 * ax[VINDEX(i)];
}
for (int i = 1; i <= nn; i++) {
for (int j = 1; j <= nn; j++) {
h2[MINDEX(i, j, nn)] = 2.0 * f1 * a[MINDEX(i, j, nn)] +
4.0 * f2 * ax[VINDEX(i)] * ax[VINDEX(j)];
}
}
for (int i = 1; i <= nn; i++) {
for (int j = 1; j <= nn; j++) {
for (int k = 1; k <= nn; k++) {
h3[AINDEX(i, j, k, nn, nn)] =
4.0 * f2 *
((ax[VINDEX(i)] * a[MINDEX(j, k, nn)]) +
(ax[VINDEX(j)] * a[MINDEX(i, k, nn)]) +
(ax[VINDEX(k)] * a[MINDEX(i, j, nn)]));
h3[AINDEX(i, j, k, nn, nn)] +=
8.0 * f3 * ax[VINDEX(i)] * ax[VINDEX(j)] * ax[VINDEX(k)];
}
}
}
for (int i = 1; i <= nn; i++) {
for (int j = 1; j <= nn; j++) {
for (int k = 1; k <= nn; k++) {
for (int l = 1; l <= nn; l++) {
h4[CINDEX(i, j, k, l, nn, nn, nn)] =
4.0 * f2 *
(a[MINDEX(j, l, nn)] * a[MINDEX(i, k, nn)] +
a[MINDEX(i, l, nn)] * a[MINDEX(j, k, nn)]);
h4[CINDEX(i, j, k, l, nn, nn, nn)] +=
16.0 * f4 * ax[VINDEX(i)] * ax[VINDEX(j)] *
ax[VINDEX(k)] * ax[VINDEX(l)];
h4[CINDEX(i, j, k, l, nn, nn, nn)] +=
8.0 * f3 * a[MINDEX(i, l, nn)] * ax[VINDEX(j)] *
ax[VINDEX(k)];
h4[CINDEX(i, j, k, l, nn, nn, nn)] +=
8.0 * f3 * a[MINDEX(j, l, nn)] * ax[VINDEX(i)] *
ax[VINDEX(k)];
h4[CINDEX(i, j, k, l, nn, nn, nn)] +=
8.0 * f3 * a[MINDEX(k, l, nn)] * ax[VINDEX(j)] *
ax[VINDEX(j)];
h4[CINDEX(i, j, k, l, nn, nn, nn)] +=
8.0 * f3 * a[MINDEX(i, k, nn)] * ax[VINDEX(j)] *
ax[VINDEX(l)];
h4[CINDEX(i, j, k, l, nn, nn, nn)] +=
8.0 * f3 * a[MINDEX(j, k, nn)] * ax[VINDEX(i)] *
ax[VINDEX(l)];
h4[CINDEX(i, j, k, l, nn, nn, nn)] +=
8.0 * f3 * a[MINDEX(i, j, nn)] * ax[VINDEX(k)] *
ax[VINDEX(l)];
}
}
}
}
return;
}

void fStressPartials(const double *x, const double *w, const double *delta,
const int *n, const int *p, const int *fNumber,
const double *par, double *stress, double *d, double *fd,
double *f1, double *f2, double *f3, double *f4) {
double par2 = 2 * *par, nn = *n, pp = *p, np = nn * pp, gx, hx, h0, g0;
double *ax = (double *)calloc((size_t)np, sizeof(double));
double *h1 = (double *)calloc((size_t)np, sizeof(double));
double *h2 = (double *)calloc((size_t)SQUARE(np), sizeof(double));
double *h3 = (double *)calloc((size_t)THIRD(np), sizeof(double));
double *h4 = (double *)calloc((size_t)FOURTH(np), sizeof(double));
double *g1 = (double *)calloc((size_t)np, sizeof(double));
double *g2 = (double *)calloc((size_t)SQUARE(np), sizeof(double));
double *g3 = (double *)calloc((size_t)THIRD(np), sizeof(double));
double *g4 = (double *)calloc((size_t)FOURTH(np), sizeof(double));
*stress = 0.0;
for (int j = 1; j <= nn - 1; j++) {
for (int i = j + 1; i <= nn; i++) {
int k = SINDEX(i, j, nn);
(void)fStressFaaDiBruno(x, n, p, &i, &j, fNumber, par, ax, &hx, &h0,
h1, h2, h3, h4);
d[k] = hx;
fd[k] = h0;
*stress += w[k] * SQUARE(delta[k] - fd[k]);
(void)fStressFaaDiBruno(x, n, p, &i, &j, fNumber, &par2, ax, &gx,
&g0, g1, g2, g3, g4);
for (int r = 1; r <= np; r++) {
int ind = VINDEX(r);
f1[ind] += w[k] * (0.5 * g1[ind] - delta[k] * h1[ind]);
for (int s = 1; s <= np; s++) {
int ind = MINDEX(r, s, np);
f2[ind] += w[k] * (0.5 * g2[ind] - delta[k] * h2[ind]);
for (int t = 1; t <= np; t++) {
int ind = AINDEX(r, s, t, np, np);
f3[ind] += w[k] * (0.5 * g3[ind] - delta[k] * h3[ind]);
for (int u = 1; u <= np; u++) {
int ind = CINDEX(r, s, t, u, np, np, np);
f4[ind] +=
w[k] * (0.5 * g4[ind] - delta[k] * h4[ind]);
}
}
}
}
}
}
*stress /= 2.0;
free(ax);
free(h1);
free(h2);
free(h3);
free(h4);
free(g1);
free(g2);
free(g3);
free(g4);
}

References

Constantine, G.M., and T.H. Savits. 1996. “A Multivariate Faà di Bruno Formula with Applications.” Transactions of the American Mathematical Society 348 (2): 503–20.

De Leeuw, J. 1977. “Applications of Convex Analysis to Multidimensional Scaling.” In Recent Developments in Statistics, edited by J.R. Barra, F. Brodeau, G. Romier, and B. Van Cutsem, 133–45. Amsterdam, The Netherlands: North Holland Publishing Company. http://www.stat.ucla.edu/~deleeuw/janspubs/1977/chapters/deleeuw_C_77.pdf.

De Leeuw, J. 2014. “Minimizing rStress Using Nested Majorization.” UCLA Department of Statistics. http://www.stat.ucla.edu/~deleeuw/janspubs/2014/notes/deleeuw_U_14c.pdf.

———. 2017. “Pseudo Confidence Regions for MDS.” doi:10.13140/RG.2.2.14230.45124.

De Leeuw, J., P.J.F Groenen, and R. Pietersz. 2006. “Optimizing Functions of Squared Distances.” UCLA Department of Statistics. http://www.stat.ucla.edu/~deleeuw/janspubs/2006/notes/deleeuw_groenen_pietersz_U_06.pdf.

De Leeuw, J., P.J.F. Groenen, and P. Mair. 2016a. “Differentiability of rStress at a Local Minimum.” doi:10.13140/RG.2.1.1249.8968.

———. 2016b. “Minimizing qStress for Small q.” doi:10.13140/RG.2.1.4843.1764.

———. 2016c. “Minimizing rStress Using Majorization.” doi:10.13140/RG.2.1.3871.3366.

———. 2016d. “Second Derivatives of rStress, with Applications.” doi:10.13140/RG.2.1.1058.4081.

Gilbert, P., and R. Varadhan. 2016. numDeriv: Accurate Numerical Derivatives. https://R-Forge.R-project.org/projects/optimizer/.

Groenen, P.J.F., and J. De Leeuw. 2010. “Power-Stress for Multidimensional Scaling.” http://www.stat.ucla.edu/~deleeuw/janspubs/2010/notes/groenen_deleeuw_U_10.pdf.

Groenen, P.J.F., J. De Leeuw, and R. Mathar. 1995. “Least Squares Multidimensional Scaling with Transformed Distances.” In From Data to Knowledge: Theoretical and Practical Aspects of Classification, Data Analysis and Knowledge Organization, edited by W. Gaul and D. Pfeifer. Berlin, Germany: Springer Verlag. http://www.stat.ucla.edu/~deleeuw/janspubs/1995/chapters/groenen_deleeuw_mathar_C_95.pdf.

Kruskal, J.B. 1964a. “Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis.” Psychometrika 29: 1–27.

———. 1964b. “Nonmetric Multidimensional Scaling: a Numerical Method.” Psychometrika 29: 115–29.

Leipnik, R.B, and C.E.M. Pearce. 2007. “The Multivarite Faà di Bruno Formula and Multivariate Taylor Expansions with Explicit Integral Remainder Term.” Australian and New Zealand Industrial and Applied Mathematics Journal 48: 327–41.

Ramsay, J. O. 1982. “Some Statistical Approaches to Multidimensional Scaling Data.” J. Roy. Statist. Soc. Ser. A 145 (3): 285–312.

Ramsay, J.O. 1977. “Maximum Likelihood Estimation in MDS.” Psychometrika 42: 241–66.

Takane, Y., F.W. Young, and J. De Leeuw. 1977. “Nonmetric Individual Differences in Multidimensional Scaling: An Alternating Least Squares Method with Optimal Scaling Features.” Psychometrika 42: 7–67. http://www.stat.ucla.edu/~deleeuw/janspubs/1977/articles/takane_young_deleeuw_A_77.pdf.