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Abstract

A general form of linear factor analysis is defined, and presented as a method to
factor a data matrix, similar in many respects to principal component analysis. We
discuss necessary and sufficient conditions for solvability of the factor analysis equations
and give a constructive method to compute all solutions. A follow up paper will present
the corresponding algorithm.
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Note: This is a working paper which will be expanded/updated frequently. All suggestions
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complete Rmd file with all code chunks, and the bib file.

1 Introduction

Problem: Suppose X is an n×m real matrix. Suppose H is a subset of Rp×p and S is a
subset of Rm×p. We want to find the solutions of the equation X = FS ′, with the n × p
matrix F of factor scores such that F ′F is in H and the m× p matrix S of factor loadings in
S.
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For reference purposes we repeat our general factor analysis model.

X = FS ′, (1)
F ′F = H, (2)
H ∈ H ⊆ Rp×p, (3)
S ∈ S ⊆ Rm×p. (4)

Note that we do not require that p ≤ min(m,n) or even p = rank(X). The interesting case
is p > m, more factors than variables. There is also no requirement that n ≥ m, by the way.

In classical exploratory orthogonal common factor analysis we require H = I and S =[
S1 | S2

]
with the m×m matrix S2 diagonal. The m× (p−m) matrix S1 has the common

factor loadings. In confirmatory common factor analysis we keep the basic structure of S but
we may fix some loadings at fixed and known values, mostly zero. In non-orthogonal versions
of common factor analysis we allow for non-zero elements in H, usually to model correlations
between common factors.

In this paper we rederive some of the basic algebraic results for factor analysis. These results,
in various forms and disguises, can be found in many places, starting with Wilson (1928)
and culminating – at least for me – in Guttman (1955). I desperately needed some clarity
after reading much of the factor indeterminacy literature, which – at least for me – has a
light-to-heat ratio close to zero. I admire Steiger and Schönemann (1978) and Steiger (1979)
for going through half a century of clunky notation, polemics, scientific denial, and doubtful
results.

Our proofs are based on powerful matrix decomposition tools, the singular value decomposition
and the eigenvalue decomposition. This makes our proofs quite different from what one
normally finds, especially in the older literature. Matrix algebra has come a long way.

2 Two Steps

Instead of directly tackling the problem of solving equations (1) − (4) we proceed in two
steps. We first give a trivial necessary condition for solvability, which has been important
throughout the history of factor analysis.

Theorem 1: [Necessary] If S and F solve (1)− (2) then X ′X = SHS ′.

Proof: Duh. QED

As we shall see in a moment, the condition X ′X = SHS ′ is also sufficient for solvability of
(1)− (2), and consequently (1)− (4) is solvable if and only if
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X ′X = SHS ′, (5)
S ∈ S, (6)
H ∈ H. (7)

Of course it does not follow that conditions (5)− (7) determine S and H uniquely. Because
of the generality of our constraints on S and H it is quite useless to look for identification
conditions.

The usual approach in factor analysis theory is to first solve (5)− (7) for S and H, and then
find all F for which X = FS ′ and F ′F = H. The fact that such an F always exists if (5)− (7)
are solvable is sometimes called the Fundamental Theorem of Factor Analysis (Kestelman
(1952)). The fact that there are usually multiple solutions for F to X = FS ′ and F ′F = H
for given S and H that solve (5)− (7) is called the Factor Score Indeterminacy Problem.

In factor analysis computation a similar two step process is followed. First an approximate
solution to (5)− (7) is computed, using multinormal maximum likelihood or least squares.
This gives an S ∈ S and an H ∈ H. Then, in the second step, we compute an approximate
solution to X = FS ′ and F ′F = H, using S and H from the first step. This is sometimes
called Factor Score Estimation.

3 Least Squares

In this paper we study only the second step only. We assume we have some S and H that
may or may not satisfy (5) − (7). Then find an expression for all F with F ′F = H that
minimize

σ(F ) = tr (X − FS ′)′(X − FS ′). (8)

This is “factor score estimation”. We then look into conditions for which the minimum of the
least squares loss function σ is zero. Those conditions give us the “fundamental theorem of
factor analysis”. And finally if the minimum of σ is zero the set of all solutions defines the
“factor score indeterminacy problem”.

Lemma 1: [Crossproduct] If the p × p positive semi-definite matrix H of rank s has
eigenvalue decomposition

H =
[
N N⊥

] [
Φ2 ∅
∅ ∅

] [
N ′

N ′⊥

]
, (9)

with the s×s diagonal matrix Φ2 positive definite, then the n×p matrix F satisfies F ′F = H
if and only if F has singular value decomposition F = TΦN ′, with some n× s matrix T with
T ′T = I.
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Proof: Write F in the form

F =
[
A B

] [
N ′

N ′⊥

]
. (10)

Then F ′F = H if and only if [
A′A A′B
B′A B′B

]
=

[
Φ2 0
0 0

]
.

Thus F ′F = H if and only if B = 0 and A′A = Φ2, which can be written as A = TΦ with
T ′T = I. QED

Theorem 2: [Least_Squares] Suppose X is an n×m matrix, S is an m× p matrix , and
H is a positive semi-definite p× p matrix of rank s with eigenvalue decomposition (9). Define
the n× s matrix R = XSNΦ and suppose

R =
[
P P⊥

] [
Ψ 0
0 0

] [
Q′

Q′⊥

]
(11)

is a singular value decomposition of R and rank R is r. The minimum of tr (X−FS ′)′(X−FS ′)
over the n× p matrices F that satisfy F ′F = H is

min
F ′F =H

tr (X − FS ′)′(X − FS ′) = tr X ′X + tr SHS ′ − 2 tr Ψ (12)

and the minimum is attained at any F with singular value decomposition

F = (PQ′ + P⊥DQ
′
⊥)ΦN ′, (13)

where the (n− r)× (s− r) matrix D satisfies D′D = I but is otherwise arbitrary.

Proof: It follows from lemma 1 that minimizing the sum of squares is equivalent to maximizing
tr T ′R over T ′T = I. Let

T =
[
P P⊥

] [
A B
C D

] [
Q′

Q′⊥

]
Then tr T ′R = tr A′Ψ while T ′T = I when[

A′A+ C ′C A′B + C ′D
B′A+D′C B′B +D′D

]
=

[
I 0
0 I

]
.

The maximum tr A′Ψ over A′A . I is equal to tr Ψ and is attained (uniquely) for A = I,
which means that C = 0 and B = 0. Thus

T = PQ′ + P⊥DQ
′
⊥,

and F has singular value decomposition
F = (PQ′ + P⊥DQ

′
⊥)ΦN ′

where D′D = I. QED
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4 Fundamental Theorem

Theorem 3: [Fundamental]

1. If X ∈ Rn×m, S ∈ Rm×p and F ∈ Rn×p and H ∈ Rp×p satisfy X = FS ′ and F ′F = H
then X ′X = SHS ′.

2. If X ∈ Rn×m, S ∈ Rm×p and H ∈ Rp×p satisfy X ′X = SHS ′ then there is an F ∈ Rn×p

such that X = FS ′ and F ′F = H.

Proof: Part 1 is just a restatement of theorem 1. To prove part 2, we show that the
minimum least squares loss is zero if and only if X ′X = SHS ′. If X ′X = SHS ′ then
RR′ = XSHS ′X ′ = (XX ′)2. Thus the singular values of R are the same as the singular
values ofX ′X and those of SHS ′, and from (12) we find that minimum loss is zero. Conversely,
if minimum loss is zero there is an F with X = FS ′ and F ′F = H and thus X ′X = SHS ′.
QED

5 Quantifying Indeterminacy

For two different choices D1 and D2 of D in (13) we have

Φ−1N ′F ′1F2NΦ−1 = PP ′ + P⊥D
′
1D2P

′
⊥.

Thus the canonical correlations of F1 and F2 are the s−r singular values of D′1D2, in addition
to r canonical correlations equal to one. Because D′1D2 & −I we see that

Φ−1N ′F ′1F2NΦ−1 & PP ′ − P⊥P ′⊥ = I − 2P⊥P ′⊥ = 2PP ′ − I,

and thus tr Φ−1N ′F ′1F2NΦ−1 ≥ 2r − s, a result due to Schönemann (1971) in classical
exploratory factor analysis. In that case we have p = s = m + c, with c the number of
common factors, and r = m. Thus 2r − s = m − c and the average correlation between
corresponding factors in two solutions is (1− c/m)/(1 + c/m).

6 Example

Our example is completely fictional, but it does illustrate some of the computations, even in
the case where there are singularities. In factor analytic terminology, it has some correlated
common factors and some correlated unique factors. The matris S is

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 0 1 0 1 0 0 0 0 0
## [2,] 2 0 0 0 0 2 0 0 0 0
## [3,] 3 0 0 0 0 0 3 0 0 0
## [4,] 0 -1 0 0 0 0 0 3 0 0
## [5,] 0 -2 0 0 0 0 0 0 2 0
## [6,] 0 -3 0 1 0 0 0 0 0 1
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and the matrix H is

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 -1 0 0 0 0 0 0 0 0
## [2,] -1 1 0 0 0 0 0 0 0 0
## [3,] 0 0 1 0 0 0 0 0 0 0
## [4,] 0 0 0 1 0 0 0 0 0 0
## [5,] 0 0 0 0 1 0 0 0 0 0
## [6,] 0 0 0 0 0 1 0 0 0 0
## [7,] 0 0 0 0 0 0 1 0 0 0
## [8,] 0 0 0 0 0 0 0 1 0 0
## [9,] 0 0 0 0 0 0 0 0 1 -1
## [10,] 0 0 0 0 0 0 0 0 -1 1

Matrix S has rank 6 and H has rank 8 (two eigenvalues equal to two, six eigenvalues equal
to one, two eigenvalues equal to zero). Eigenvalue decomposition of H defines N and Φ.

Thus SHS ′ is

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 3 2 3 1 2 3
## [2,] 2 8 6 2 4 6
## [3,] 3 6 18 3 6 9
## [4,] 1 2 3 10 2 3
## [5,] 2 4 6 2 8 4
## [6,] 3 6 9 3 4 11

with a trace equal to 58. We fill a 30×6 matrix X with random normal deviates and compute
R = XSNΦ.

The sum of squares of X is 220.2584815037, and the trace norm of R (sum of singular values)
is 100.3767382715, which means minimum least squares loss is 77.5050049607.

We can now use (13) to construct F . Choose the 24× 2 matrix D by
d <- matrix (0, 24, 2)
diag (d) <- 1

The corresponding F is

Using the sup-norm we find ‖H − F ′F‖∞ equal to 1.2212e-15 and tr(X − FS ′)′(X − FS ′)
equal to 77.5050049607.

Now we cheat a bit and simply make an X such that X ′X = SHS ′. We use a 30× 30 matrix
of standard normals, orthonormalize it with qr(), and take the first 6 columns as K and the
last 24 as K⊥. Then Λ and L are taken from the eigenvalue decomposition of SHS ′.

The sum of squares of X and the trace norm of R are both 58, which means minimum
least squares loss is zero. With the same D as before we use (13) to construct F . Again
‖H − F ′F‖∞ is equal to 1.3323e-15 and now ‖X − FS ′‖∞ is equal to 1.4211e-14.
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7 And Now . . . For Our Next Act

In the second part of this paper we will discuss an algorithm in R that minimizes (8) over
S ∈ S, H ∈ H and F with F ′F = H. This is a one-step algorithm, in the sense that we
construct S,H and F simultaneously. Clearly choice of S and H is critical here. In fact, we
will modify the problem somewhat so that we minimize

σ(F,H, S) = tr(X − FHS ′)′(X − FHS ′),

where we require F ′F = I and H ∈ H. Both S and H are defined by elementwise box
constraints, which include the extreme cases of no constraint and constrained to be a fixed
real number.
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