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DISCRIMINANT COORDINATES FOR ASYMMETRIC
DISSIMILARITY DATA BASED ON RADIUS MODEL

Kensuke Tanioka∗ and Hiroshi Yadohisa∗∗

Asymmetric multidimensional scaling is a visualization method that reveals relations
between objects using their asymmetric dissimilarity data as input. Such visualization
is important in areas such as marketing science since it reveals consumer dynamics and
brand competition. Large amounts of asymmetric dissimilarity data can be processed
by modern information technology; nevertheless, it remains difficult to interpret the
asymmetries between many objects. To overcome this problem, we propose a new vi-
sualization method called discriminant coordinates for asymmetric dissimilarity data,
which interprets the relations between and within a set of object classes, given asymmet-
ric dissimilarity data. The method easily interprets the estimated asymmetries between
and within classes, even when the asymmetric dissimilarity data contain noise if some
assumptions for asymmetric dissimilarity data is satisfied.

1. Introduction

Asymmetric dissimilarity occurs when the dissimilarity from object i to object j

does not necessarily equal that from object j to object i. Asymmetric dissimilarity

data appear in various fields such as marketing area. The object relations in asym-

metric dissimilarity data can be visualized by asymmetric multidimensional scaling

(asymmetric MDS) (Borg and Groenen, 2005; Chino, 2012; Saito and Yadohisa, 2005).

The radius model is a well-known asymmetric MDS model (Okada and Imaizumi,

1987) applied to brand switching data. In this application, the brand switching data

from i to j are expressed as the purchase frequency of brand j by previous purchasers

of brand i. The radius model reveals competitive relations among the brands. It

describes the symmetric parts as object coordinates in d-dimensions, and the skew-

symmetric parts as the radii of the objects. If the relations between objects are largely

asymmetric, object tends to be assigned to the large radii, and the other to the small

radii. On the other hand, if the relations have little asymmetry, these objects tend to

have almost the same radii.

Large and complex asymmetric dissimilarity data can be processed by modern in-

formation technologies. If the number of objects is large, however, it is difficult to

interpret asymmetries between objects. In this case, if the information of classes of

objects can be given, we can utilize asymmetries between and within classes, instead

of asymmetries of objects, which make the interpretation easier, although we need

to assume that objects belonging to the same class are similar each other and these

Key Words and Phrases: Asymmetric Dissimilarity Data, Asymmetric Multidimensional Scaling, Clus-

tering, Simultaneous Optimization

∗ Graduate School of Culture and Information Science, Doshisha University

∗∗ Department of Culture and Information Science, Doshisha University

Mail Address: kensuke.t0628@gmail.com

phone: +81 774 65 7657



2 Kensuke Tanioka and Hiroshi Yadohisa

asymmetric relations are simple. Therefore, it is important to reveal asymmetries

between and within classes using the asymmetric dissimilarity data and the classes

of objects as inputs if objects belonging to the same class are similar each other and

their asymmetries are simple. For example, there exist tea brand switching data. In

Japan, consumers may choose among numerous brands and types of tea, such as green

tea and oolong. In this case, detecting the asymmetric relations between and within

tea brands classes characterized by types is important for interpreting the features of

tea, if each class has the common features. If given object classes can be interpreted

by asymmetric MDS, such methods may become readily adaptable to the asymmetric

dissimilarity data. To achieve this purpose, the following two properties of asymmet-

ric MDS should be satisfied; the resulting classes should be discriminated from each

other, and the asymmetries within and between classes should be interpreted easily.

To satisfy the first property, when interpreting class features in asymmetric MDS,

objects belonging to the same class should be closely spaced, while those belonging

to different classes should be well-separated. One method for visualizing the differ-

ences between classes is the discriminant coordinates (DC) method (Seber, 1984),

which is applicable to multivariate data rather than dissimilarity data, but which has

motivated our approach. Another technique, called cluster difference scaling (CDS)

(Heiser & Groenen, 1997) is unsuited to our purpose. CDS is designed only for sym-

metric dissimilarity data, meaning that asymmetries cannot be interpreted from CDS

results. Therefore, no existing method can satisfy the first property.

To satisfy the second property, asymmetries within classes should be simply struc-

tured, even at the cost of sacrificing the correctness of the asymmetries to some degree.

Succinctly, the asymmetries within classes are described by a few kinds of length of

radii, which can be used to classify objects into a small number of clusters within

classes based on the lengths of radii. This purpose is known to be achieved by a

tandem method of k-means (MacQueen, 1967) and an asymmetric MDS based on the

radius model. The tandem method was reported by Kiers et al. (2005) for symmetric

MDS.

The tandem method involves of two steps to satisfy the second property. In the

first step, the radius model is applied to the asymmetric dissimilarity data, and in

the second step, the k-means method is applied to the estimated radii within each

class in the second step. From the results of the tandem method, the lengths of radii

for objects can be represented by a small number of clusters through different shapes

or colors of objects. However, this approach sometimes fails to classify objects based

on the lengths of the radii; as an example, the results of tandem clustering are pre-

sented in Figure 1. The left and right panels display the true data and the result of

tandem clustering with noise, respectively. The true data consist of two classes, each

with two kinds of radii lengths. The true asymmetric dissimilarity data are generated

from the true data, and noise are added to the dissimilarity data. Next, the tandem

method is applied to the asymmetric dissimilarity data. Figure 1 shows that the tan-

dem method sometimes mislabels the estimated object radii if these dissimilarities

include noise. Moreover, the objects within each class are spatially dispersed because



DISCRIMINANT COORDINATES FOR ASYMMETRIC DISSIMILARITY DATA BASED ON RADIUS MODEL 3

Figure 1: True structure with the number of classes equal to 2 (the left figure) and the result of
the tandem clustering with noise (the right figure).

the radius model is unconstrained obscuring the features of the classes. Concretely,

when some of the asymmetric dissimilarity data within the same class are noisy, the

tandem method delivers poor results, although objects belonging to the same class

are assumed to be located close to one another. In this situation, the information

about the classes can be used, to recover the true structure.

In this paper, we propose a new technique, called discriminant coordinates for

asymmetric dissimilarity data (DCADD) method, which simultaneously discriminates

the coordinates of objects based on the object classes to classify the objects based

on estimated radii. The proposed method has two advantages. First, the estimated

coordinates of objects belonging to the same class are closely located allowing easy

interpretation of the features of skew-symmetric parts. In addition, the axis can be

easily interpreted using information about the classes. Second, when objects belong-

ing to the same class have a few types of radii lengths, the features of objects having

radii within each class becomes simple to interpret. The proposed method can de-

tect the clustering structure of the objects according to radii lengths, even when the

asymmetric dissimilarity data are very noisy.

The remainder of this paper is structured as follows. Section 2 introduces the

asymmetric dissimilarity data, the proposed model, and the objective function. The

properties of the proposed objective function and the estimation process are discussed

in Section 3. Finally, the superiority of the proposed method is demonstrated through

simulations and real applications in Section 4 and 5, respectively.

2. Model and the objective function of the DCADD method based on
the radius model

This section introduces the constrained radius model and defines the proposed

objective function. To this end, we define asymmetric dissimilarity data and the
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indicator matrix.

The asymmetric dissimilarity data are expressed as follows:

Δ = (δij), δij ∈ R
+ (i, j = 1, 2, · · · , n),

where ¬(δij = δji) and δii = 0 for all i, j = 1, 2, · · · , n, n is the number of objects,

and R
+ is the set of positive real number. If the value of δij (i, j = 1, 2, · · · , n) is

large, the difference from i to j is considered to be large. Conversely, if the value of

δij (i, j = 1, 2, · · · , n) is small, difference from i to j is considered to be small.

Next, the indicator matrix is defined as follows:

U = (u1,u2, · · · ,uk) = (uis), uis =

{
1 (object i belong to class s)

0 (others)
(1)

(i = 1, 2, · · · , n; s = 1, 2, · · · k; k ≤ n)

where, k is the number of classes.

Given asymmetric dissimilarity data Δ and an indicator matrix U , model of the

discriminant coordinates for the asymmetric dissimilarity data are determined by the

following radius model approach:

k∑
s=1

k∑
t=1

wstΓsΔΓt = D(X)− 1(Ψ (Ik∗ ⊗U)r∗)T + Ψ (Ik∗ ⊗U)r∗1T +E, (2)

where Γs = diag(us),

wst =

{
as (s = t)

1 (others)
subject to

k∑
s=1

as = 1, and as ≥ 0 (s = 1, 2, · · · , k), (3)

the Euclidean distance matrix of the estimated coordinates matrix

D(X) = (dij(X)),
(
dij(X) = ‖x(i) − x(j)‖

)
(i, j = 1, 2, · · · , n)

where X = (x(1),x(2), · · · ,x(n))
T ,x(i) ∈ R

d (i = 1, 2, · · · , n),

the indicator matrix of objects for radii

Ψ = (Ψ1,Ψ2, · · · ,Ψk∗), Ψ� = diag(ψ1�, ψ2�, · · · , ψn�),

ψi� ∈ {0, 1} (i = 1, 2, · · · , n; � = 1, 2, · · · , k∗)
k∗∑
�=1

ψi� = 1 (i = 1, 2, · · · , n),

where k∗ is the number of clusters, esimated radii by clusters

r∗ = (r∗T1 , r∗T2 , · · · , r∗Tk∗ )T , r∗� = (r∗1�, r
∗
2�, · · · , r∗k�) (� = 1, 2, · · · , k∗),

r∗s� ≥ 0 (s = 1, 2, · · · , k; � = 1, 2, · · · , k∗),

1 = (1, 1, · · · , 1), Ik∗ is k∗ × k∗ identity matrix, ⊗ is kronecker product, and
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E = (eij), eij ∈ R (i, j = 1, 2, · · · , n) is error matrix.

To reduce the internal within-class variation, wst (s, t = 1, 2, · · · , k) is introduced.
Objects belonging to the same class are assumed to have k∗ kinds of radii. In the

proposed method, the radius model is expressed as follows:

Ψ(Ik∗ ⊗U)r∗ =
k∗∑
�=1

Ψ�Ur∗� , (4)

and an elementary description of Eq. (4) is given by:

k∑
s=1

uis

k∗∑
�=1

ψi�r
∗
s� (i = 1, 2, · · · , n)

Therefore, if ψi� = 1 and object i belongs to class s, then object i belongs to cluster

� of class s :conversely, if ψi� = 0 and object i belongs to class s, object i does not

belonging to cluster � of class s.

An example of DCADD is presented in Figure 2,

Figure 2: The model of DCADD in case of 2 classes and 3 clusters.

The DCADD result is interpreted in a manner similar that of the radius model, but

with an additional consideration: objects belonging to the same class are divisible

into k∗ clusters, and these radii differ among these clusters.

We next introduce the objective function of the discriminant coordinates of the

asymmetric dissimilarity data. This function is based on the radius model and Eq.

(2).
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L(W ,X,Ψ , r∗| Δ,U)

=
∥∥∥

k∑
s=1

k∑
t=1

wstΓsΔΓt −
[
D(X)− 1(Ψ (1k∗ ⊗U)r∗)T + Ψ (1k∗ ⊗U)r∗1T

]∥∥∥2 −→ Min

(5)

subject to r∗s� ≥ 0 (s = 1, 2, · · · , k; � = 1, 2, · · · , k∗), subjection (3), and ψi� ∈
{0, 1} (i = 1, 2, · · · , n; � = 1, 2, · · · , k∗).

The tasks of the objective function are to estimate the weights within the clusters,

the object coordinates, the indicator matrix of the radii, and the radius parameters.

3. DCADD algorithm based on the radius model

The DCADD algorithm is based on the alternative least squares criterion (ALS)

(Young, et al., 1980). The objective function is first decomposed into its symmet-

ric and skew-symmetric parts, and each parameter in the objective function is then

updated. The proposed objective function is decomposed identically to the objective

function in the radius model (Borg and Groenen, 2005; Bove and Critchley, 1993).

We put Δ∗ =
∑k

s=1

∑k
t=1 wstΓsΔΓt, and Δ∗ can be decomposed as follows:

Δ∗ =
1

2
(Δ∗ +Δ∗T ) +

1

2
(Δ∗ −Δ∗T ). (6)

In Eq. (6), (Δ∗+Δ∗T )/2 and (Δ∗−Δ∗T )/2 denote the symmetric and skew-symmetric

part, respectively. From this decomposition, the objective function can be decomposed

into symmetric and skew-symmetric parts as follows:

L(W ,X,Ψ , r∗| Δ,U)

=
∥∥∥Δ∗−

[
D(X)−1(Ψ (Ik∗ ⊗U)r∗)T+Ψ (Ik∗ ⊗U)r∗1T

]∥∥∥2

=
∥∥∥1
2
(Δ∗+Δ∗T )+

1

2
(Δ∗−Δ∗T )−

[
D(X)−1(Ψ (Ik∗ ⊗U)r∗)T+Ψ (Ik∗ ⊗U)r∗1T

]∥∥∥2

=
∥∥∥1
2
(Δ∗+Δ∗T )−D(X)

∥∥∥2 (7)

+
∥∥∥1
2
(Δ∗−Δ∗T )−

[
Ψ (Ik∗ ⊗U)r∗1T−1(Ψ (Ik∗ ⊗U)r∗)T

]∥∥∥2 (8)

The terms labeled (7) and (8) in the above expression are the symmetric and skew-

symmetric parts of the objective function, respectively. The estimation of X is based

solely on the symmetric part (7). Similarly, the estimates of Ψ and r∗ are based solely

on the skew-symmetric part (8). However, estimates of W are based on Eq. (5).

We now describe the algorithm of the proposed objective function algorithm.
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Algorithm

Step 0 Set U , k∗, d and a constant value ε > 0 and initialize, X, Ψ , and r∗.
Step 1 Update W based on (5), given X, Ψ , and r∗

Step 2 Update X based on the symmetric part of (7), given W

Step 3 Update Ψ based on the skew-symmetric part of (8), given W , and r∗

Step 4 Update r∗ based on the skew-symmetric part of (8), given W , and Ψ

Step 5 If difference of the values of the objective function in the previous and

current iterations is smaller than a threshold value ε, terminate the algorithm:

otherwise return to Step1

Here, the updated formula corresponding to the parameters of the objective func-

tion are derived.

To satisfy constraint (3), the diagonal elements of W = (wst) are given by

wss = as =
b2s∑k
t=1 b

2
t

(s = 1, 2, · · · , k).

Therefore, the problem of estimating as(s = 1, 2, · · · , k) becomes that of estimat-

ing bs(s = 1, 2, · · · , k) (Gill et al., 1981). As an estimation method, we adopt the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Details of this algorithm are

provided in Nocedal and Wright (1999).

Using the decomposition terms of the objective function (7) and (8), the coordinate

matrix X is estimated to be equivalent to the ordinal metric MDS weighted by W .

Therefore, the BFGS is adopted for the estimation of X.

Now, let us describe the method of updating Ψ is shown. ψi� (i = 1, 2, · · · , n; � =
1, 2, · · · , k∗) is estimated to satisfy the following:

ψi� =

⎧⎨
⎩

1 (‖I(A+ 1rT� U
T )Ti + Ti(A−Ur∗�1

T )I‖2
≤ ‖I(A+ 1rT�∗U

T )Ti + Ti(A−Ur∗�∗1
T )I‖2)

0 (others)

,

for �∗ = 1, 2, · · · , k∗, where Ti = diag(t1i, t2i, · · · , tni), tii = 1 (i = 1, 2, · · · , n) and

tji = 0 (j 	= i; i, j = 1, 2, · · · , n), I is the identity matrix, and

A =
1

2
(Δ∗ −Δ∗T ).

For the estimation of r∗, an constrained numerical solution is used. This is because the

value of (8) does not change if the estimate of r∗∗ is updated such that r∗ = r∗∗ + c1,

where c is some constant value like the radius model (Borg and Groenen, 2005).

Therefore, we set c = −min r∗s�.
When estimating W and r, we adopt BFGS. Whenever these parameters are es-

timated at each step, the feasible area does not change because all of the updated

parameters always satisfy the constraints. The values of the parameters estimated at

the previous step are used as initial parameters for W , X, Ψ and r∗. In addition,
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when the i th element of diag Ψ is updated, the other elements have no effect on

the update. Therefore, if these parameters are updated, the value of the objective

function does not increase because parameters at the previous step are included in

the feasible areas.

4. Simulation

In this section, the clustering results of the proposed method are evaluated via a

simulation study. First, let us present the simulation design.

In this simulation, we introduce four phases. The first phase compares the results

of the proposed method with those of tandem clustering. Tandem clustering consists

of two steps. In the first step, asymmetric MDS based on the radius model is applied

to the asymmetric data. In the second step, k-means is applied to the estimated

lengths of the radii within each class to classify the objects into k∗ clusters. For the

second phase, the number of classes is set to 2, 3, and 5, as implemented in Milligan

and Cooper (1988).

Before describing the third phase, let us show how the artificial data are generated,

in this simulation. We use the right-hand side of Eq. (2) without E, with d = 2 as

follows:

X1 ∼ N(−1, 1), Xs2 ∼ N(s− 1, 1) (s = 1, 2, · · · , k),
rs1 ∼ U(0.3, 0.5) (s = 1, 2, · · · , k),
rs� = r(s−1)� + r∗s�, r∗s� ∼ U(0.3, 0.5) (s = 1, 2, · · · , k; � = 2, 3, · · · , k∗)

whereX1 andXs2 are random variables selected from a normal distribution of the first

and the second dimensions of class s, respectively , the radii rs1 and r∗s� are uniformly

distributed , and elements of Ψ are randomely determined. The objects in the first

dimension Xi1 are concretely assumed to possess no clustering structure, while those

belonging to the same cluster, s, in the second dimension Xs2 are assumed to have a

clustering structure. Ninety objects are discriminated into 2, 3, and 5 classes, which

end up containing 45, 30, and 18 objects, respectively.

In the third phase, two levels of noise are imposed on the asymmetric dissimilarity

data. One level is adding no noise, and the other level is that 75% of the number

of dissimilarities within each class are replaced by noise, where noise dissimilarity is

δij ∼ U(3, 5). The numbers of noises in the 2, 3, and 5 classes are 3037, 2025, and

1215, respectively.

In the fourth phase, three values are set for the number of clusters of radii. Specif-

ically, the numbers are 2, 3, and 5.

Eighteen separate scenarios (3 kinds of classes × 2 noise levels × 3 kinds of clusters)

are simulated. One-hundred artificial data points are generated for each scenario. The

asymmetric clustering result is evaluated by the ARIs (Hubert & Arabie, 1985), which

are calculated for all object classes: their mean is used for method evaluation.

The clustering result is displayed as a box plot in Figure 3.
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Figure 3: Results of the proposed and tandem methods in the phase 1, and the vertical axis
indicates ARI.

Figure 4: Results of the proposed and tandem methods in the phase 2.

In this figure, the results of the proposed method are compared with those of the

tandem method. The median of the ARIs for the proposed method is higher than that

for the tandem method, and the internal variations in each case are almost the same.

Therefore, the results of the proposed method are superior to those of the tandem

method in terms of both representative points and internal variations.

The results of the phase 2 are presented in Figure 4. The results are similar to

those of Figure 3. The results of the proposed method are superior to those of the

tandem method, irrespective of the number of classes.

The results of phase 3 are presented in Figure 5. The result of the proposed method

is superior to that of the tandem method irrespective of the presence of noise. While

the results of the proposed method are worse for the case where there is noise than

they are for the case of noiselessness, the results of the tandem method are almost

the same in either case.

Finally, the results of phase 4 are presented in Figure 6. In the cases where the

number of clusters is 2, or 3, the results of the proposed methods are superior to those

of the tandem method: however, when the number of clusters is 5, the results of the
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Figure 5: Results of the proposed and tandem methods in the phase 3.

Figure 6: Results of the proposed and tandem methods in the phase 4.

tandem method are superior to those of the proposed method.

5. Application

We now evaluate the proposed method in a real application, namely, the switching

data of Japanese tea bottles. These data were generated from scan panel data col-

lected in Tokyo on July 2012 and provided by MACROMILL, INC. The sixteen brands

of Japanese tea bottles are listed in Table 1, and the switching data are presented

in Table 2. Each entry in Table 2, pij (i, j = 1, 2, · · · , n), specifies the frequency of

switching from a brand i to another brand j. In this application, “Kinds of tea” in

Table 1 are considered as classes.

These object classes and their asymmetries represent the competitive relations

among brands and the tendencies of customers to switch to other brands, respec-

tively.

The purpose of this application is to comprehend the asymmetries in the inter- and

intra-class relations. The switching data are converted from the asymmetric similar-

ity data to asymmetric dissimilarity data based on three kinds of transformations as

follows:
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Table 1: Brands and types of Japanese tea bottles (abbreviations shown in parentheses).

Abbreviation Tea bottle brand Kinds of tea

1. DG Daido Green tea Green tea(G)
2. IG1 Itoen Green tea1 Green tea(G)
3. IG2 Itoen Green tea2 Green tea(G)
4. IG3 Itoen Green tea3 Green tea(G)
5. KaG Kao Green tea Green tea(G)
6. SaG Sangaria Green tea Green tea(G)
7. SG1 Suntory Green tea1 Green tea(G)
8. SG2 Suntory Green tea2 Green tea(G)
9. 7G 7 & i Green tea Green tea(G)

10. ABl Asahi Blended tea Blended tea(Bl)
11. CBl1 Coca cola Blended tea1 Blended tea(Bl)
12. CBl2 Coca cola Blended tea2 Blended tea(Bl)
13. CBl3 Coca cola Blended tea3 Blended tea(Bl)
14. KaBl Kao Blended tea Blended tea(Bl)
15. KBl1 Kirin Blended tea1 Blended tea(Bl)
16. KBl2 Kirin Blended tea2 Blended tea(Bl)

Table 2: Japanese tea bottle switching data.

1 2 3 4 5 6 7 8

1. DG 32 0 0 0 0 0 0 0
2. IG1 2 283 0 18 2 2 1 40
3. IG2 2 41 177 9 0 2 1 13
4. IG3 0 0 0 18 2 0 3 9
5. KaG 0 0 0 0 58 0 1 3
6. SaG 2 0 0 0 0 24 0 0
7. SG1 0 0 0 0 0 1 14 0
8. SG2 3 0 0 0 0 3 8 246
9. 7G 0 4 5 0 0 0 0 3

10. ABl 0 15 11 5 0 0 2 11
11. CBl1 0 0 0 0 0 0 0 0
12. CBl2 0 0 0 0 0 3 0 0
13. CBl3 2 0 0 0 0 5 0 0
14. KaBl 0 0 0 0 0 0 0 2
15. KBl1 0 0 0 0 0 0 0 0
16. KBl2 0 0 0 0 0 0 0 0

9 10 11 12 13 14 15 16

1. DG 0 0 0 0 0 0 1 0
2. IG1 0 0 0 5 18 0 17 2
3. IG2 0 0 0 2 10 0 6 0
4. IG3 0 0 1 2 8 0 9 0
5. KaG 0 0 0 1 1 6 0 1
6. SaG 0 0 0 0 0 0 2 0
7. SG1 0 0 0 1 2 0 8 0
8. SG2 0 0 2 2 26 0 21 1
9. 7G 56 0 0 1 1 0 2 0

10. ABl 4 137 2 5 16 2 5 2
11. CBl1 0 0 22 0 0 0 3 1
12. CBl2 0 0 4 114 0 0 13 7
13. CBl3 0 0 7 22 201 0 23 5
14. KaBl 0 0 0 3 2 28 1 2
15. KBl1 0 0 0 0 0 0 192 13
16. KBl2 0 0 0 0 0 0 0 5
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Figure 7: Values of objective function for DCADD and radius model. The horizontal axes indi-
cate the number of dimensions, and the vertical axes indicate values of the objective
function.

δij = maxij,i 	=j(pij)− pij + o∗ (i 	= j; i, j = 1, 2, · · · , n) (9)

δij =
(o mi mj

p∗ij

)1/2

(i, j = 1, 2, · · · , n), (10)

δij = (pii + pjj − 2pij)
1/2 (i, j = 1, 2, · · · , n), (11)

where p∗ij = pij + o∗ (o∗ > 0 is a small constant value) prevents a singularity at

pij = 0, mi and mj are the sums of the entries in the ith row and jth column of

Table 2, respectively, and o is a constant. In the application, we set o = 1, and

o∗ = 0.1. Transformation 1 Eq. (9) and 3 Eq. (11) are shown in Cox and Cox (1994),

and transformation 2 Eq. (10) is called the as gravity model (Tobler and Wineburg,

1971).

In the application, when transformation 1 (9) is applied, self-similarities are not

considered. On the other hand, transformations 2 (10) and 3 (11) can consider the

self-similarities. In previous studies for applying asymmetric MDS to brand-switching

data, the gravity model was used (Borg and Groenen, 2005; Groenen and Heiser, 1996;

Zielman and Heiser, 1993).

To determine the number of dimensions, and the number of clusters, see Figure 7.

In this application, the candidates of the numbers of dimensions are 1, 2, 3, 4, and 5

and those of clusters are 2, 3, 4, and 5. Therefore, there are 20 pair-wise combinations

of the numbers of dimensions and clusters for the DCADD method. For the case of
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the radius model, there are 5 candidates because there is no need to determine the

number of clusters. These parameters are determined using changes in the values of

the objective functions. When the value of the objective function for each candidate

is calculated, the DCADD or asymmetric MDS method is applied to the asymmetric

dissimilarity data 50 times for various initial values, and the results corresponding to

the minimum value are selected from among them.

As shown in Figure 7, the number of dimensions is set to 2 for each result. For

transformations 1 (9), 2 (10) and 3 (11), the numbers of clusters are set to 3, 4 and

3, respectively.

First, the results of the radius model and the DCADD method corresponding to

transformation 1 (9) are shown.

As shown in Figure 8, for the result of the radius model, the asymmetric relation

between the brands can be easily interpreted and these brands belonging to the same

class are located closely each other. However, the length of the radii is different de-

pending on the degree of asymmetry and it is difficult to interpret these asymmetric

relations as a whole, especially when the number of objects is large.

From Figure 9, it is easy to interpret the asymmetric relation within and between

the classes because the brands within each class have only three kinds of radii. Show-

ing the same tendency as radius model result, KBl1 has a relatively large radius and

ABl, IG1 and IG2 have relatively small radii. Additionally, it is easy to interpret the

asymmetric relations within each class and between different classes because brands

belonging to the same class are located closely each other.

Next, we show the results of transformation 2 (10) for the radius model and the

proposed method in Figures 10, and 11, respectively. For the results of the radius

model, the asymmetries are difficult to be discerned and the structures of the classes

and asymmetries cannot be interpreted because the length of each radii gets large

by estimation, although brand belonging to the same class are located closely. On

the other hand, for the results of the DCADD method, it is easy to interpret the

asymmetries within and between classes. For the results of the radius model, it is

difficult to interpret the relation between brands located near the (0, 0) although dis-

similarities within class are small. On the other hand, we can easily to understand

the feature within and between classes since brands belonging to the different classes

are discriminated each other. The tendency is not the same as that of transformation

1 (9) because transformation 1(9) does not consider the self dissimilarities.

Finally, the results of the radius model and the DCADD method corresponding to

transformation 3 (11) are shown in Figures 12 and 13. From the results of transforma-

tion 3 (11), the asymmetries cannot be represented in low-dimensions. This is because

the values of self-similarities tend to be larger than those of non-self-similarities.

As a result of the applications, if it is difficult to interpret the asymmetries within

and between classes, DCADD can be useful in some cases. In fact, when transforma-

tion 2 (10) is used to consider the self similarities, the DCADD method provides us

with a mean of interpreting the asymmetric relations easily in this application. The

lengths of radii for the features of the DCADD method tend to be smaller than those
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Figure 8: The result of the radius model with transformation 1 (9).

Figure 9: The result of the proposed method with transformation 1 (9).

for the radius model. This is because the asymmetric dissimilarities within classes be-

come small through the estimation of wss (s = 1, 2, · · · , k). However, when DCADD

is applied to asymmetric dissimilarity data, we have to check whether the assumption

is satisfied or not. In the application, from the both results by the radius model and

DCADD, it can be confirmed that brands belonging to the same class are located

closely. Therefore, we consider the data as the one including class structure.

6. Conclusion

In this paper, we proposed the DCADD method to reveal the asymmetry within

and between object classes, given asymmetric dissimilarity data. In the case of noisy

asymmetric dissimilarity data, the proposed method detects asymmetries in the clus-
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Figure 10: The result of the radius model with transformation 2 (10).

Figure 11: The result of the proposed method with transformation 2 (10).

tering structure that cannot be revealed by the tandem method combining the radius

model with k-means clustering. When DCADD parameters are estimated, there exist

a lot of local optimal solutions. Therefore, DCADD does not guarantee global opti-

mal solutions. In practice, DCADD must be applied to the data with various kinds

of initial values.

In the future work, we must solve the remaining three problems. The first problem

is that the result of the DCADD method does not hold if the number of clusters are

very large. The second problem is the means of checking the assumptions of DCADD.

There are two assumptions. First, the objects within the same class are cohesive, and

second, that lengths of radii within the same class can be represented by k∗ kinds

of radii. In the application, we compared the results of DCADD to those of radius

model and checked the appropriateness. However, it needs a criteria to check whether
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Figure 12: The result of the radius model with transformation 3 (11).

Figure 13: The result of the proposed method with transformation 3 (11).

the assumptions is satisfied or not.

Finally, the original discriminant coordinates is proposed based on discriminant

analysis. Therefore, DCADD should consider the notion of discriminant analysis such

that variations of objects in low- dimensions within each class are minimized and

those between classes are maximized. It can be possible to propose method asym-

metric MDS with penalty term of discriminant analysis for the coordinates of objects.

However, it is difficult to determine the tuning parameters for the term related to

discriminant analysis and the results depend on the tuning parameters. Therefore, in

this paper, we adopt different approach. To overcome this problem, how to determine

the tuning parameters should be carefully considered.
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