Second Derivatives of rStress, with
Applications

Jan de Leeuw, Patrick Groenen, Patrick Mair

Version 009, January 20, 2016

Contents

1 Problem 1
2 Derivatives 2
3 Newton’s Method 2
4 Dutch Political Parties 3
5 Majorizing Newton 5
6 Sensitivity Analysis 9
7 Nonmetric MDS 11
8 Code 16
9 NEWS 22
References 23

Note: This is a working paper which will be expanded/updated frequently. The directory
gifi.stat.ucla.edu/secstress has a pdf copy of this article, the complete Rmd file that includes
all code chunks, and R files with the code. Suggestions are welcome 24 /7.

1 Problem

Define the multidimensional scaling (MDS) loss function

n

on(x) = 3 wi(s: — (@A))2, (1)

=1

http://gifi.stat.ucla.edu/secstress

with » > 0 and the A; positive semi-definite. The w; are positive weights, the J; are non-
negative dissimilarities. We call this rStress (De Leeuw, Groenen, and Mair (2016)). Special
cases are stress (Kruskal 1964) for r = 1, sstress (Takane, Young, and De Leeuw 1977) for
r = 1, and the loss function used in MULTISCALE (Ramsay 1977) for r — 0.

In this paper we are interested in the first and second derivatives of rStress, and in the various

applications of these derivatives to the problem of minimizing rStress.

2 Derivatives

Compact expression for the first and second derivatives of o, can be given by defining the
matrices

Zw”xAx’" A, (2)
Cr(x) = Zl wi(2' Ag)* A, (3)
sz (' Avr)™ 1[A +2(r—1)Ajj;fi] (4)
T.(z) := ;wi(ﬁ’Aﬁ)z”_l [Ai +2(2r — 1)’4;“:”2;4@1 . (5)
We then have
Do, (z) = —4r{B,(z)z — C\(z)}z, (6)
and
Do, (x) = —4r{S,(z) — T,(z)}. (7)

Note that S,(z) is positive semi-definite for r > £ and T, (z) is positive-semi-definite for
r>1
=1

We have written the R function mdsDerivatives () to evaluate the gradient and Hessian. Just
to make sure our formulas are correct, the code can optionally compute numerical derivatives
using the numDeriv package of Gilbert and Varadhan (2014).

3 Newton’s Method

Newton’s method to minimize rStress is

2 = 50— [5,(a) = T(a)] 7 (By(a) - Co(a®))a®. ®

As we can expect in highly nonlinear situations like MDS, Newton’s method without safeguards
sometimes works and sometimes doesn’t. If it works, it is generally fast, which is of some
interest at least because the majorization method developed in De Leeuw, Groenen, and Mair
(2016) for minimizing rStress can be very slow, especially for r > %

4 Dutch Political Parties

Our main example in the paper is are the dissimilarity measures for nine Dutch political
parties, collected by De Gruijter (1967).

KVP PvdA VVD ARP CHU CPN PSP BP
PvdA 5.63

VVD 5.27 6.72

ARP 4.60 5.64 5.46

CHU 4.80 6.22 4.97 3.20

CPN 7.54 5.12 8.13 7.84 7.80

PSP 6.73 4.59 7.55 6.73 7.08 4.08

BP 7.18 7.22 6.90 7.28 6.96 6.34 6.88

D66 6.17 5.47 4.67 6.13 6.04 7.42 6.36 7.36

Newton’s method converges in all cases, although it often behaves very erratically in the
early iterations. Table 1 shows the number of iterations, the rStress value, the maximum
norm of the gradient, and the smallest eigenvalue of the Hessian at the solution.

r: 0.40 iters: 78 1rStress: 0.03457307 maxGrad: 0.00000000 minHess:
r: 0.45 iters: 13 rStress: 0.06911461 maxGrad: 0.00000000 minHess:
r: 0.50 iters: 84 rStress: 0.06534576 maxGrad: 0.00000000 minHess:
r: 0.55 iters: 113 1rStress: 0.08887568 maxGrad: 0.00000000 minHess:
r: 0.65 iters: 50 rStress: 0.11963294 maxGrad: 0.00000002 minHess:
r: 0.75 iters: 9 rStress: 0.14507211 maxGrad: 0.00000000 minHess:
r: 0.90 iters: 66 rStress: 0.13438893 maxGrad: 0.00000000 minHess:
r: 1.00 iters: 26 rStress: 0.14925820 maxGrad: 0.00000000 minHess:
r: 2.00 iters: 47 rStress: 0.35796584 maxGrad: 0.00000000 minHess:

Table 1: Newton solutions with various r

Clearly for the majority of solutions Newton stops at a saddle point, or at least a flat spot

fairly close to a local minimum. Only for large values of r do we find a proper local minimum.

For values of r less than .40 we cannot get Newton to work. It rapidly diverges into regions
with very large values of both x and rStress. The configurations in figure 1 also seem to differ
quite a bit for smaller values of r. Note the increased clustering for increasing r, until finally
for r = 2 parties are put in the edges of an equilateral triangle.

. 36€
. 682
.834
. 75€
. 887
.125
.00C
.00C
.00C

dimension 2

dimension 2

0.00 0.06

-0.06

0.10

-0.10 0.00

] PSP
-|cHU cH
—RP PvdA

—vP
7] Bf

VVD
AP
KVP cP
BH
66
= PvdA PSP
I I I I

Newton forr = 0.4

I D6Q/\{D I
-0.05 0.05

dimension 1

Newton for r = 0.55

-0.10 0.00 0.10

dimension 1

dimension 2

dimension 2

0.05

-0.05

0.00 0.10

-0.15

Newton for r = 0.45

PSPpyda
- KVP
- BP Vv
PN D66
= CHU

ARP
LI B I B
-0.10 0.00 0.10

dimension 1

Newton for r = 0.65

1 Psp D66
PN

. V
—1PvdA

_ CHU
_| KVP

. ARP BP

-0.15 0.00 0.15

dimension 1

dimension 2

dimension 2

0.00 0.10

-0.10

0.0 0.2

-0.2

TPN
“psp Bh
_pda
i WD
kvp D66
I I |

Newton forr = 0.5

-0.05 0.05

dimension 1

Newton forr = 0.75

n VVD
CHU
-1 PvdA
P ARPY
PN
BP
T T T T
-0.2 0.0 0.1
dimension 1

Newton forr = 0.9 Newton forr =1 Newton forr =2

N
R AT S ™
N N] NI
s 5 s °
2 o _fdA @ 3 A \4 2 o4]
0] o 0] 0] =)
S &K S —sP D66 £ -
k=] n T o |PN T o
o o6 KVP S !
Vo T o —RP
Q VVD BP ' C
T T T T 1 1 T 1 1 1T T T T 11
-0.2 0.0 0.1 0.2 -0.2 0.0 0.2 -0.4 -0.1 0.1
dimension 1 dimension 1 dimension 1

Figure 1: Newton configurations with various r

5 Majorizing Newton

In this section we limit ourselves to the case r > % Without loss of generality we assume the
dissimilarities are scaled by

n
i=1
Next, it is convenient to define

n

pr(x) = wid; (2’ Az, (10)

=1

and

so that

O-T(x) =1- 2pr(x> + Ur(fﬂ)- (12>

If r > £ then both p, and 7, are convex (De Leeuw, Groenen, and Mair (2016)). Thus

pr(x) > pr(y) + (. —y)Dply), (13)

for all x and y, which translates to the majorization

UT(x) = myin((x,y), (14)

where

C(z,y) ==1=2p(y) — 4r(z —y)'B:(y)y + n,(x). (15)

Now consider the algorithm where we use block relaxation to alternate over minimization
over (over x and y. By definition

argmin ((z,) = 1, (16)

so minimization over y for given z is trivial. We minimize ¢ over x for given y by using
one or more steps of Newton’s method, relying on the fact that (is convex in x for given
y. Thus there will be no local minima problem with Newton, although we may observe
non-convergence. Note that it will not be neceesary for convergence to iterate Newton to
convergence between updates of y. In fact we propose an algorithm in which only a single
Newton step is done.

The derivatives needed for the Newton steps are

'D1<($, y) = _4T(Br(y)y - CT(JZ)Z’), (17>

and

Dil(x,y) = 4T, (x). (18)

Thus the two-block algorithm with a single Newton step becomes
s = o), (19)
o) = o [T, O) (B, (y)y — Cya®)at®), (20)
but this is of course equivalent to the algorithm

6

2 = 20— [1,(a)] (B2) = € (). 1)

This is what we have implemented in our R program, using the parameter 1inearize=TRUE.
By default 1inearize=FALSE, which is the standard uncorrected Newton method.

The idea is to give up some speed (and quadratic convergence) by gaining stability. In table
2 we do see larger numbers of iterations (but iterations are marginally faster because they do
not need S,(x)). We also have observed monotone convergence of loss function values in all
cases, and we see that convergence is always to a local minimum. In most cases, except for
r = 1, the solution found has a lower loss function value than the one found by the Newton
method. Remember, however, that our majorization method is only guaranteed to work for
r> %

r: 0.40 iters: 288 1rStress: 0.02854517 maxGrad: 0.00000011 minHess:
r: 0.45 iters: 268 1rStress: 0.03823655 maxGrad: 0.00000009 minHess:
r: 0.50 iters: 729 1rStress: 0.04460338 maxGrad: 0.00000011 minHess:
r: 0.55 iters: 186 rStress: 0.05524495 maxGrad: 0.00000009 minHess:
r: 0.65 iters: 104 rStress: 0.07731578 maxGrad: 0.00000006 minHess:
r: 0.75 iters: 96 rStress: 0.10711307 maxGrad: 0.00000006 minHess:
r: 0.90 iters: 150 1rStress: 0.13989729 maxGrad: 0.00000005 minHess:
r: 1.00 iters: 1020 1rStress: 0.15444014 maxGrad: 0.00000005 minHess:
r: 2.00 iters: 53 rStress: 0.23176557 maxGrad: 0.00000005 minHess:

Table 2: Majorization solutions with various r

The configurations found by the majorization method are more stable over different values
of r, and show the familar effect of becoming more and more clustered if r increases. Note
that for » = 2 the majorization method finds a better location of the parties to the edges,
although finding the optimum allocation is of course a combinatorial problem.

.00C
.00C
.00C
.00C
.00C
.00C
.00C
.00C
.00C

dimension 2

dimension 2

0.05

-0.05

0.00 0.10

-0.10

. CcH

= VVD

-| PSP ARH
—=PN CH

_ pDes YV

-0.15

Newton forr = 0.4

D66

pspPVdA ARp

PN KVP

BP
! ! !

-0.05 0.05

dimension 1

Newton for r = 0.55

KVP
PvdA

T T T T 1
0.00 0.10

dimension 1

dimension 2

dimension 2

0.05

-0.05

0.00 0.10

-0.15

-0.20

. BP

7] CH

4N CcH

Newton for r = 0.45

vVvDQ
PN KVP

PSP
PvdA ARP

D66
! ! ! !

-0.10 0.00

dimension 1

Newton for r = 0.65

pvdA VP
PSP ARF

-0.05 0.10

dimension 1

dimension 2

dimension 2

0.00 0.10

-0.10

0.0

-0.2

RVP
—| pspPvdA ARH
—PN CH
D66 VVI
BP

Newton forr = 0.5

T T T 1
-0.10 0.00 0.10

dimension 1

Newton forr = 0.75

D66
PvdA KVP

PSP AR
PN CH
VVD

BP

-0.2 0.0 0.1

dimension 1

dimension 2

0.0 0.2

-0.2

Newton forr = 0.9

PvdA

bsp
PN

D66
KVP
AR

CH
VVD

-0.2

L B
0.0 0.2

dimension 1

Newton forr =1

~ D66
N =} VD PvdA
- _
2 o | PSH
E °© ChP|
- B
d —
[RP
T T T 1
-0.2 0.0 0.2
dimension 1

Figure 2: Majorization with various r

dimension 2

0.3 05

-0.1 0.1

Newton forr =2

BP

P

LI I B B B B
-0.2 00 02 04

dimension 1

In table 3 we give the rStress values and iteration numbers for the scalar majorization
algorithm of De Leeuw, Groenen, and Mair (2016). We sce that the rStress values for r > §
are basically the same as the ones from the majorization algorithm in this paper, but the
number of iterations is much larger. In fact, it is larger than 100,000 for » = 1 and r = 2.

##
##
##
#i#
#i#
##

H B B KR KK

N O O OO

.10
.25
.50
.75
.00
.00

iters:
iters:
iters:
iters:
iters:
iters:

29103
3605
3566
3440

NA
NA

rStress:
rStress:
rStress:
rStress:
rStress:
rStress:

O O O O O O

.00546400
.00631000
.04460300
.10711300
.1565639200
.23487700

Table 3: Scalar majorization solutions with various r

6 Sensitivity Analysis

The second derivatives can also be used to draw sensitivity regions around points in an
MDS solution. At a point x where the first derivatives vanish and the Hessian is positive
semi-definite, we have

7:(y) % 01 (2) + 5 (& —) Do (@) —), (22)

and thus {y | o,.(y) < a} is approximately the ellipsoid

{y| (z =y Do (2)(x — y) < 2(a — 0,(2))}. (23)

For graphics in the plane we take 2 x 2 principal submatrices of the Hessian and draw ellipses,
for example by using the R package car (Fox and Weisberg (2011)). We have to remember
that in car the shape matrix is the inverse of our second derivative matrix, while their radius

parameter corresponds with our /2(a — o,.(z)).

We illustrate this with the majorization solution for r = %, which has rStress 0.0446034. In

figure 3 we choose a@ — 0, = .001, which means we look for the solutions which have rStress
larger than 0.0446034 by 0.001 or less.

0.10
I

KVP

—CPN

dimension 2

-0.05 0.00

I I I I
-0.10 -0.05 0.00 0.05

-0.10

0.05
I
=] I
o Cc

dimension 1

Figure 3: Sensitivity regions for r = 0.5

10

7 Nonmetric MDS

Our main function newtonMe () has parameter nonmetric, by default FALSE, and ties, by
default "primary". It uses the algorithm from De Leeuw (2016) to perform a monotonic
regression after updating the configuration. We start with three runs for r = % The first is
Newton, the second Newton with majorization, and the third non-metric majorized Newton.
Since the data do not have many ties (in fact just one) there is no opportunity to compare
primary, secondary, and tertiary.

For the number of iterations in the three runs we find
[1] 84 729 489
and for rStress

[1] 0.065345759 0.044603383 0.008436025

If we compare the configurations in figure 4 we see how the non-metric solution is less
fine-grained than the metric one, although of course the fit is vastly improved.

Newton Majorized Newton Nonmetric majorized Newton
= 10
- CPN P KVP S o psp PvdA KVArp
S Jpse BA | psp PvdA ARP PN CHY
N N N =
5 7] 5 3 CH S
2 o lda 2 g PN 2 9 D68 vv
o O 4 o 9
E o £ £
ko] VVD ko] . ko] |
4 AR o Des VD
o D66 - o
= _|KVP CHU P BP | BP
C|> I I I I I I I I (ID I I I I I I
-0.05 0.05 0.10 -0.10 0.00 0.10 -0.15 -0.05 0.05
dimension 1 dimension 1 dimension 1

11

Figure 4: Three solutions for r = 1/2

The Shepard diagram in figure 5 shows the optimal non-metric transformation of the data.

(@)
Q
S | o ®
8 CSDOGBDODO
o | 0©
(0)] (o)
= LN
[.
o} o (@)
o
- 0000 O
o
(@]
.":‘3_ 00
o

O
I I I I I I I

0.08 0.10 0.12 0.14 0.16 0.18 0.20

delta

Figure 5: Shepard diagram for non-metric solution

A somewhat more elaborate example uses the Ekman (1954) color data. These have also
been analyzed with various values of r in De Leeuw, Groenen, and Mair (2016). The data are
well known for their excellent fit and for the very regular circular pattern in the recovered
configurations. The data have quite a few ties, the 91 dissimilarities have only 47 unique
values.

434 445 465 472 490 504 537 555 584 600 610 628 651
445 0.14

465 0.58 0.50

472 0.58 0.56 0.19

490 0.82 0.78 0.53 0.46

504 0.94 0.91 0.83 0.75 0.39

537 0.93 0.93 0.90 0.90 0.69 0.38

555 0.96 0.93 0.92 0.91 0.74 0.55 0.27

584 0.98 0.98 0.98 0.98 0.93 0.86 0.78 0.67

600 0.93 0.96 0.99 0.99 0.98 0.92 0.86 0.81 0.42

610 0.91 0.93 0.98 1.00 0.98 0.98 0.95 0.96 0.63 0.26

628 0.88 0.89 0.99 0.99 0.99 0.98 0.98 0.97 0.73 0.50 0.24

651 0.87 0.87 0.95 0.98 0.98 0.98 0.98 0.98 0.80 0.59 0.38 0.15

674 0.84 0.86 0.97 0.96 1.00 0.99 1.00 0.98 0.77 0.72 0.45 0.32 0.24

We analyze the data for both r = % and » = 1, with Newton, majorized Newton, and
non-metric majorized Newton with both primary and secondary approach to ties. This gives
a total of 8 analyses.

Let’s look at the results for r = % first. Both Newton and Majorized Newton converge to
the same solution. The two non-metric solutions have much lower rStress, and take more
iterations to converge. But the configurations in figure 6 show all four configurations are
basically the same.

Newton: iterations: 7 rStress: 0.01721325
Majorized Newton: iterations: 47 rStress: 0.01721325
Non-metric Majorized Newton (Primary): iterations: 191 rStress: 0.00053373
Non-metric Majorized Newton (Secondary): iterations: 115 rStress: 0.00099767

Table 4: Ekman Solutions with r = 1/2

Newton Metric majorize
< 50453?55 584 S
o o
N o —hwo 60 N o
g] , 61 g
© — ©
8_ :65 a5, 667%21 8
S TTITTT 9
-0.06 0.04
dim 1 dim 1
Nonmetric Primary Nonmetric Secondary
g] 50453555 584 g 584
N o - 600 4\ S 600
£ =" o £ 61
© © e @gi‘ © [{o} e%i
S 7 . S
@ TTTTTIT 9
-0.06 0.04 -0.06 0.04
dim 1 dim 1

13

Figure 6: Four Ekman solutions for r = 1/2

Shepard plots for the primary and secondary approach to ties are tight and slightly convex.
Again, they differ only in detail.

Primary Secondary
o S
3 — S] &
o g &
_ @ 8
o & S &
— © o
o & @&
IS () I — g
5 . o 5 0
(o]
8 | Koo S oo
o [®) o o
_ 8@@) _ Ooood@
&L
S | m@o° S 00O
o o 0
&00 @O
I I I I I I I I I I
0.2 04 06 08 10 0.2 04 06 08 10
delta delta

Figure 7: Ekman Shepard Plots r = 1/2

For r = 1 Newton converges to a local maximum, with all points in the origin. The other
three solutions in figure 8 are basically the same. They do not differ much from the plots for
r= %, maybe exhibit a bit more clustering. The Shepard plots in figure 9 are cnsiderably
more convex and non-linear than the ones for r = %, again indicating clustering (small
dissimilarities become smaller after transformation, larger ones become larger).

NA iterationms: 4 1rStress: 1.00000000
NA iterations: 65 rStress: 0.09306315
NA iterations: 281 1rStress: 0.00090145
NA iterations: 139 rStress: 0.00238525

Table 5: Ekman Solutions with r = 1

14

Newton Metric majorize

- 1 - 584
N o | N o 600
g —] § - 61]
© ? | © ? 8%
T 1
-0.2 0.0 0.2 -0.2 0.0 0.2
dim1 dim1
Nonmetric Primary Nonmetric Secondary
5
— 504 584 — 584
N O 600 N O 600
E 4 % E &
T S e 94 T 5 674
| 4 |
-0.2 0.1 -0.2 0.1

dim 1 dim 1

Figure 8: Four Ekman solutions for r = 1

15

Primary

0.15
I

0.10
I

!
g
&
&

dhat

((3)))

0.05
I

00

oo 8%
[[[[[

02 04 06 08 1.0

0.00
I

delta

Figure 9: Ekman Shepard Plots r = 1

8 Code

library (numDeriv)
library (MASS)

dhat

0.05 0.10 0.15

0.00

Secondary

o
o
@
o
e
®
e
&
am
0@9
0
o
006»06
[[[[[
02 04 06 08 10

delta

amalgm <- function (x, w = rep (1, length (x))) {

dyn.load ("pava.so")
n <- length (x)
a <- rep (0, n)
b <- rep (0, n)
y <= rep (0, n)

1f <-
.Fortran (
"AMALGM" ,
n = as.integer (n),
x = as.double (x),

16

= as.double (w),
= as.double (a),
as.double (b),
= as.double (y),
tol = as.double(le-15),
ifault = as.integer(0)

< T P =
I

)
return (1f$y)
}
isotone <-
function (x,
Vs
w = rep (1, length (x)),
ties = "secondary") {

f <- sort(unique(x))
g <- lapply(f, function (z)
which(x == z))
n <- length (x)
k <- length (f)
if (ties == "secondary") {
w <- sapply (g, length)
h <- lapply (g, function (x)
y[x])
m <- sapply (h, sum) / w
r <- amalgm (m, w)
s <- rep (0, n)
for (i in 1:k)
slgllil]] <- r[il
}
if (ties == "primary") {
h <- lapply (g, function (x)
y[x])
m <- rep (0, n)
for (i in 1:k) {
ii <- order (h([[il])
gllil] <- gllil] [ii]
h[[i]] <- h([[i]][ii]
+
m <- unlist (h)
r <- amalgm (m, w)
s <- rlorder (unlist (g))]
}

if (ties == "tertiary") {

17

}

w <- sapply (g, length)
h <- lapply (g, function (x)
y[x1)
m <- sapply (h, sum) / w
r <- amalgm (m, w)
s <- rep (0, n)
for (i in 1:k)
slgllil]l] <- ylglli]]] + (r[i] - m[iD)

return (s)

}

rStress <- function (x, w, delta, a, r) {
n <- length (a)
s <- 0

for

(i in 1:n) {

xax <- sum (x * (al[[il] %*% x))

S

}

<- s + wl[i] * (deltali] - xax ~r) ~ 2

return (s)

by

mdsDerivatives <- function (x, w, delta, a, r, numerical = FALSE) {
m <- length (x)
n <- length (a)
b <- ¢ <- s <- t <- matrix (0, m, m)

for

(i in 1:n) {

xa <- drop (al[i]] %*% %)
xax <- sum (x * xa)

b
G
s

+
gan
han

<- b + w[i] * delta [i] * (xax ~ (r - 1)) * a[[i]]

<-c+wli] * (xax = (2 * r - 1)) * a[[i]]

<_

s + wli] * deltali] * (xax = (r - 1)) * (a[[il]l + 2 * (r - 1) * outer(xa, xa) / xe
<_

t + wli] * (xax =~ (2 *x r - 1)) * (al[i]l] + 2 * (2 * r - 1) * outer(xa, xa) / xax)

<- =4 x r * drop ((b - ¢) %*}% x)
<- -4 xr *x (s - t)

result <- list (

b

c
S
t

b,
= ¢,
S,
t

3

18

gan = gan,
han han

)

if (numerical) {
gnu <- grad (

rStress,
X,
W= W,
delta = delta,
a = a,
r=r
)
hnu <- hessian (
rStress,
X,
W= W,
delta = delta,
a = a,
r=r
)
result <- c¢ (result, list (gnu = gnu, hnu = hnu))

by

return (result)

b

torgerson <- function(delta, p = 2) {
doubleCenter <- function(x) {
n <- dim(x) [1]
m <- dim(x) [2]
s <- sum(x) / (n * m)
xr <- rowSums(x) / m
Xc <- colSums(x) / n
return((x - outer(xr, xc, "+")) + s)
}
z <-
eigen(-doubleCenter((as.matrix (delta) ~ 2) / 2), symmetric = TRUE)
v <- pmax(z$values, 0)
return(z$vectors[, 1:p] %*% diag(sqrt(v([i:pl)))

u <- function (i, n) {
return (ifelse (i == 1:n, 1, 0))

19

e <- function (i, j, n) {
d<_u(i)n)_u(j’n)
return (outer (d, d4))

}

directSum <- function (x) {
m <- length (x)
nr <- sum (sapply (x, nrow))
nc <- sum (sapply (x, ncol))
z <- matrix (0, nr, nc)
kr <- 0
kc <- 0
for (i in 1:m) {
ir <- nrow (x[[i]])
ic <- ncol (x[[i]])
zlkr + (1:ir), kc + (1:ic)] <- x[[i]]
kr <- kr + ir
kc <- kc + ic
}
return (z)

b

repList <- function(x, n) {
z <- list()
for (i in 1:n)
z <- c(z, list(x))
return(z)

b

makeA <- function (n, p = 2) {
m<-nx*x(m-1) /2
a <- list()
for (j in 1:(n - 1))
for (i in (j + 1):n) {
d <-u (i, n) - u (j, n)
e <- outer (d, 4d)
a <- c(a, list (directSum (repList (e, p))))
}
return (a)

3

newtonMe <-
function (delta,
xini = NULL,

20

w = rep (1, length (delta)),
p =2,

r = .5,

eps = le-15,

itmax = 1000,

linearize = FALSE,

nonmetric = FALSE,

ties = "primary",

verbose = TRUE) {
n <- nrow (as.matrix (delta))
dhat <- delta / sqrt (sum (delta ~ 2))
if (is.null (xini)) {
xold <- as.vector (torgerson (dhat, p))
} else {
xo0ld <- xini
}
a <- makeA (n, p)
dold <- sapply (a, function (u)
sum (xold * (u %*% xo0ld)))
eold <- dold " r
sold <- sum (w * (dhat - eold) ~ 2)
itel <- 1
repeat {
h <- mdsDerivatives (xold, w, dhat, a, r)
if (linearize) {
xnew <- drop (xold - ginv (4 * r * h$t) %*% h$gan)
} else {
xnew <- drop (xold - ginv (h$han) %x*% h$gan)
+
dnew <- sapply (a, function (u)
sum (xnew * (u %*% xnew)))
enew <- dnew "~ T
if (nonmetric) {
dhat <- isotone (delta, enew, ties = ties)
dhat <- dhat / sqrt (sum (dhat ~ 2))
+
snew <- sum (w * (dhat - enew) ~ 2)
if (verbose) {

cat (
formatC (itel, width = 4, format = "4d"),
formatC (
sold,
digits = 10,
width = 13,

21

format = "f"
),
formatC (
snew,
digits = 10,
width = 13,
format = "f"
),
Il\nll
)
}
if ((itel == itmax) || (abs(sold - snew) < eps))
break
itel <- itel + 1
x0ld <- xnew
dold <- dnew
sold <- snew

}
return (list (
x = matrix (xnew, n, p),
d = dnew,
dhat = dhat,
rstress = snew,
g = h$gan,
h = h$han,
itel = itel
))

9 NEWS

001 01/17/16 Sadly incomplete version

002 01/17/16 Added Newton with Majorization

003 01/17/16 Added addional runs, many edits

004 01/18/16 Figures redone, tables redone, discussion added
005 01/18/16 Compare with older algorithm

006 01/18/16 Add sensitivity regions

007 01/18/16 Numerous small corrections

008 01/19/16 Added nonmetric options

009 01/20/16 Added Ekman example

22

References

De Gruijter, D.N.M. 1967. “The Cognitive Structure of Dutch Political Parties in 1966.”
Report E019-67. Psychological Institute, University of Leiden.

De Leeuw, J. 2016. “Exceedingly Simple Isotone Regression with Ties.” doi:10.13140/RG.2.1.3698.2801.

De Leeuw, J., P. Groenen, and P. Mair. 2016. “Minimizing rStress Using Majorization.”
do0i:10.13140/RG.2.1.3871.3366.

Ekman, G. 1954. “Dimensions of Color Vision.” Journal of Psychology 38: 467-74.

Fox, J., and S. Weisberg. 2011. An R Companion to Applied Regression. Second Edition.
Thousand Oaks, CA: Sage. http://socserv.socsci.memaster.ca/jfox/Books/Companion.

Gilbert, P., and R. Varadhan. 2014. numDeriv: Accurate Numerical Derivatives. https:
//R-Forge.R-project.org/projects/optimizer/ .

Kruskal, J.B. 1964. “Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric
Hypothesis.” Psychometrika 29: 1-27.

Ramsay, J. O. 1977. “Maximum Likelihood Estimation in Multidimensional Scaling.” Psy-
chometrika 42: 241-66.

Takane, Y., F.W. Young, and J. De Leeuw. 1977. “Nonmetric Individual Differences in
Multidimensional Scaling: An Alternating Least Squares Method with Optimal Scaling
Features.” Psychometrika 42: 7-67. http://www.stat.ucla.edu/~deleeuw /janspubs/1977/
articles/takane young deleeuw A 77.pdf.

23

https://doi.org/10.13140/RG.2.1.3698.2801
https://doi.org/10.13140/RG.2.1.3871.3366
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
https://R-Forge.R-project.org/projects/optimizer/
https://R-Forge.R-project.org/projects/optimizer/
http://www.stat.ucla.edu/~deleeuw/janspubs/1977/articles/takane_young_deleeuw_A_77.pdf
http://www.stat.ucla.edu/~deleeuw/janspubs/1977/articles/takane_young_deleeuw_A_77.pdf

	Problem
	Derivatives
	Newton's Method
	Dutch Political Parties
	Majorizing Newton
	Sensitivity Analysis
	Nonmetric MDS
	Code
	NEWS
	References

