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Abstract

A low-dimensional multidimensional scaling example is used to illustrate properties
of the stress loss function and of different iteration methods.
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Note: This is a working paper which will be expanded/updated frequently. All sugges-
tions for improvement are welcome, and some would be really benificial. For example, I
only use base R graphics, nothing more fancy, because base is all I know. The directory
gifi.stat.ucla.edu/twoPoints has a pdf version, the complete Rmd file with all code chunks,
the bib file, and the R source code.
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1 Theory

In Multidimensional Scaling (MDS) we minimize a loss function, called Kruskal’s stress, which
is defined by (Kruskal (1964a), Kruskal (1964b))

σ(Z) := 1
2

n∑
i=1

n∑
j=1

wij(δij − dij(Z))2 (1)

over the n× p configurations Z. Here the weights W and the dissimilarities ∆ are known
symmetric, non-negative, and hollow matrices of numbers. The matrix D(Z) in (1) has the
(Euclidean) distances between the n points in the configuration. Thus if ei are unit vectors,
with zeroes everywhere, except for element i, which is one, and Aij := (ei− ej)(ei− ej)′, then
d2
ij(Z) = tr ZAijZ ′.

Stress is a complicated function with potentially a large number of local minima and saddle
points. In order to study the behavior of stress we shall look at configurations of the form
Z = αX + βY , with X and Y known, fixed, and centered configurations. This makes stress
a function of the two variables α and β, and we can use standard contour and perspective
plots to study the function. This extends earlier work by De Leeuw (1993). We assume linear
independence, in the sense that αX + βY = 0 if and only if α = β = 0.

First some simplications. Define the 2× 2 matrices

Vij :=
[
tr XAijX ′ tr XAijY ′
tr Y AijX ′ tr Y AijY ′

]
,

and define γ as the vector with elements α and β. Now

σ(γ) = 1−
n∑
i=1

n∑
j=1

wijδij
√
γ′Vijγ + 1

2γ
′V??γ, (2)

where we have assumed for convenience that
1
2

n∑
i=1

n∑
j=1

wijδ
2
ij = 1,

and where
V?? :=

n∑
i=1

n∑
j=1

wijVij.

Note that if all wij are one, then

V?? = 2n
[
X ′X X ′Y
Y ′X Y ′Y

]
.

We now make a change of variables, using the Cholesky decomposition V?? = S ′S, with S
upper-triangular. Define θ := Sγ and Uij := (S ′)−1VijS

−1. Then
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σ(θ) = 1−
n∑
i=1

n∑
j=1

wijδij
√
θ′Uijθ + 1

2θ
′θ. (3)

In MDS we usually (De Leeuw (1977)) also define the matrix-valued function

B(θ) :=
n∑
i=1

n∑
j=1

wij
δij

dij(θ)
Uij, (4)

with dij(θ) :=
√
θ′Uijθ and the function ρ(θ) := θ′B(θ)θ. Definition (4) can be extended

using subgradients if dij(θ) = 0 for some i, j (see De Leeuw (1977)). For our purposes we can
define B(θ) more generally by omitting the terms with dij(θ) = 0. The definition of ρ allows
us to write

σ(θ) = 1− ρ(θ) + 1
2θ
′θ. (5)

If dij(θ) > 0 for all i, j such that wijδij > 0 then stress is differentiable at θ and Dσ(θ) =
θ −B(θ)θ, so that stationary points are defined as solutions of θ = B(θ)θ. De Leeuw (1984)
shows that stress is always differentiable at local minima. At a stationary point θ is an
eigenvector of B(θ) with eigenvalue equal to one. If this is the largest eigenvalue, then θ
actually gives the global minimum of stress (De Leeuw, Groenen, and Mair (2016)). Also
observe that at a stationary point ρ(θ) = θ′θ, and thus (5) implies θ′θ ≤ 2. All stationary
values are within a circle or sphere with radius

√
2.

The smacof algorithm (De Leeuw (1977), De Leeuw and Mair (2009)) is the iterative algorithm

θ(k+1) = B(θ(k))θ(k). (6)

Note that the algorithm is self-scaling, in the sense that all points on a ray through the origin
have the same update. Thus B(λθ)(λθ) = B(θ)θ for all λ 6= 0.

If stress is differentiable at θ then D2σ(θ) = I −H(θ), where

H(θ) :=
n∑
i=1

n∑
j=1

wij
δij

dij(θ)

{
Uij −

Uijθθ
′Uij

θ′Uijθ

}
. (7)

Note that Dρ(θ) = B(θ)θ and D2ρ(θ) = H(θ). Also note that H(λθ) = |λ|−1H(θ), and thus
for any θ there is a λ(θ) such that D2σ(λθ) is positive definite for all λ > λ(θ).

The smacof algorithm convergences to a solution θ of the stationary equations, with a linear
convergence rate equal to the largest eigenvalue of H(θ) (see De Leeuw (1988)).

Note that D2σ(θ)θ = θ, which means that Newton’s method takes the form
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θ(k+1) = (I −H(θ(k))−1B(θ(k))θ(k). (8)

Note that Newton is definitely not self-scaling. Equation (8) also suggest a natural safeguarded
version of Newton’s method, using I − ηH, where 0 ≤ η ≤ 1. For η = 0 this is a smacof step,
for η = 1 this is a Newton step.

On the line through θ and the origin the function σ is a convex quadratic. Thus at every
point, except at the origin, there is at least one direction of descent, and consequently stress
has only a single local maximum at θ = 0, equal to one. In the differentiable case this is also
clear from D2σ(θ)θ = θ, which says that the Hessian has at least one positive eigenvalue.

Because stress is an even function, with σ(θ) = −σ(θ) for all θ, minima come in pairs.

2 Example

Our first example has n = 4, all weights equal to one, and all dissimilarities equal. The
same example has been analyzed by De Leeuw (1988), De Leeuw (1993), Trosset and Mathar
(1997). For this example the global minimum in two dimensions has its four points in the
corners of a square. That is our X, which has stress 0.02859548. Our Y is another stationary
point, which has three points in the corners of an equilateral triangle and the fourth point
in the center of the triangle. Its stress is 0.0669873. Another way of looking at the two
configurations is that X are four points equally spaced on a circle, and Y are three points
equally spaced on a circle with the fourth point in the center of the circle. De Leeuw (1988)
erroneously claims that Y is a non-isolated local minimum of stress, but Trosset and Mathar
(1997) have shown there exists a descent direction at Y , and thus Y is actually a saddle point.
Of course the stationary points defined by X and Y are far from unique, because we can
distribute the four points over the various corners in many ways.

The example is chosen in such a way that there are non-zero α and β such that d12(αX+βY ) =
0. In fact d12 is the only distance that can be made zero by a non-trivial linear combination.

Note that we have used σ for three different functions. The first one with argument Z is
defined on configuration space, the second one with argument γ on coefficient space, and the
third one with argument θ also on coefficient space. This is a slight abuse of notation, rather
innocuous, but we have to keep it in mind.

From lemma 1we see that Dσ(X) = Dσ(Y ) = 0 then Dσ(1, 0) = Dσ(0, 1) = 0. Thus
stationary points in configuration space are preserved as stationary points in coefficient space,
but the reverse implication may not be true. If D2σ(X) and D2σ(Y ) are positive semi-definite,
then so are D2σ(1, 0) and D2σ(0, 1). Thus local minima are preserved. But it is entirely
possible that D2σ(X) and/or D2σ(Y ) are indefinite, and that D2σ(1, 0) and/or D2σ(0, 1) are
positive semi-definite. Thus saddle points in configuration space can be mapped into local
minima in coefficient space. As we will see this actually happens with Y , the equilateral
triangle with center, in our example.
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2.1 Global Pictures

We first make a global perspective plot, over the range (−2.5,+2.5).

theta_1

th
et

a_
2

stress

Figure 1: Global Perspective

We see the symmetry, following from the fact that stress is even. We also see the local
maximum at the origin, where stress is not differentiable. Also note the ridge, where d12(θ) = 0
and where stress is not differentiable either. The ridge shows nicely that on rays emanating
from the origin stress is a convex quadratic. Also, far away from the origin, stress globally
behaves very much like a convex quadratic (except for the ridge). Clearly local minima must
be found in the valleys surrounding the small mountain at the origin, all within the sphere
with radius

√
2.

Figure 2 is a countour plot of stress over (−2,+2)⊗ (−2,+2). The red line is {θ | d12(θ) = 0}.
The blue line has the minimum of the convex quadratic on each of the rays through the origin.

5



Thus all local minima, and in fact all stationary points, are on the blue line. Note that the
plot uses θ to define the coordinate axes, not γ = (α, β). Thus there are no stationary points
at (0, 1) and (1, 0), but at the corresponding points (1.3938468501, 0) and (1.040640449,
0.8849253413) in the θ coordinates (and, of course, at their mirror images).

Besides the single local maximum at the origin, it turns out that in this example there are at
least five pairs of stationary points. Or, more precisely, I have not been able to find more
than five. Each stationary point θ has a mirror image −θ. Three of the five are local minima,
two are saddle points. Local minima are plotted as blue points, saddle points as red points.
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Figure 2: Global Contour
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2.2 First Minimum

We zoom in on the first local minimum at (1.0406404488, 0.8849253415). Its stress is
0.0669872981 and the corresponding configuration is in figure 3.
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Figure 3: Configuration First Minimum

Note that this local minimum corresponds with the equilateral triangle with center, which is
a saddle point in configuration space (Trosset and Mathar (1997)). The eigenvalues of B(θ)
are (1.3686346146, 1) and those of the Hessian I −H(θ) are (1, 0.0817218104). The area of
the contour plot around the stationary value is in figure 4.
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Figure 4: Contour Plot First Minimum

2.3 Second Minimum

The second local minimum (which is the global minimum) at (1.3938468501, 0) has stress
0.0285954792 and the corresponding configuration is in figure 5.
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Figure 5: Configuration Second Minimum

The eigenvalues of B(θ) are (1.1362798549, 1) and those of the Hessian I − H(θ) are (1,
0.3743105348). The area of the contour plot around the stationary value is in figure 6.
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Figure 6: Contour Plot Second Minimum

2.4 Third Minimum

The third local minimum at (0.1096253665, 1.3291941942) has stress 0.1106125366 and the
corresponding configuration is in figure 7.
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Figure 7: Configuration Third Minimum

The eigenvalues of B(θ) are (1.5279386667, 1) and those of the Hessian I − H(θ) are (1,
0.2362078313). The area of the contour plot around the stationary value is in figure 8.
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Figure 8: Contour Plot Third Minimum

2.5 First Saddle Point

The saddle point at (0.3253284471, 1.2916758288) has stress 0.1128674774 and the corre-
sponding configuration is in figure 9.
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Figure 9: Configuration First Saddlepoint

The eigenvalues of B(θ) are (1.7778549251, 1) and those of the Hessian I − H(θ) are (1,
-0.3110880057). The area of the contour plot around the stationary value is in figure 10.
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Figure 10: Contour Plot First Saddlepoint

2.6 Second Saddle Point

The saddle point at (1.1238371005, 0.7762045565) has stress 0.067248329 and the correspond-
ing configuration is in figure 11.
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Figure 11: Configuration Second Saddlepoint

The eigenvalues of B(θ) are (1.4111961819, 1) and those of the Hessian I − H(θ) are (1,
-0.0841169222). The area of the contour plot around the stationary value is in figure 12.
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Figure 12: Contour Plot Second Saddlepoint

3 Regions of Attraction

3.1 Smacof

We use the smacof() function from the code in the appendix with 100 different starting
points of θ, equally spaced on the circle. Figure 13 is a histogram of the number of smacof
iterations to convergence within 1e− 15. In all cases smcof converges to a local minimum in
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coefficient space, never to a saddle point. Figure 14 shows which local minima are reached
from the different starting points. This shows, more or less contrary to what Trosset and
Mathar (1997) suggest, that non-global minima can indeed be points of attraction for smacof
iterations.
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Figure 13: Histogram Number of Smacof Iterations
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3.2 Newton

We repeat the same exercise with Newton’s method, which converges from all 100 starting
points. In higher dimensions we may not be so lucky. The histogram of iteration counts is in
figure 15. It shows in this example that smacof needs about 10 times the number of iterations
that Newton needs. Because smacof iterations are much less expensve than Newton ones,
this does not really say much about computing times. If we look at figure 16 we see the
problem with non-safeguarded Newton. Although we have fast convergence from all 100
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starting points, Newton converges to a saddle point in 45 cases.
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Figure 15: Histogram Number of Newton Iterations
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4 Another Look

Remember that ρ(θ) = θ′B(θ)θ. Thus σ(λθ) = 1− λρ(θ) + 1
2λ

2θ′θ, and

min
λ
σ(λθ) = 1− 1

2
ρ2(θ)
θ′θ

.

Thus we can minimize σ over θ by maximizing ρ over the unit circle S := {θ | θ′θ = 1}.
This is a nice formulation, because ρ is norm, i.e. a homogeneous convex function of θ.
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Consequently we have transformed the problem from unconstrained minimization of the DC
function (i.e. difference of convex functions) stress to that of maximization of a ratio of norms.
In turn this is equivalent to maximization of the convex function ρ over the unit circle, or,
again equivalently, over the unit ball, a compact convex set. This transform was first used in
MDS by De Leeuw (1977), partly because it made the theory developed by Robert (1967)
available.

The levels sets {θ | ρ(θ) = κ} are the ρ-circles defined by the norm ρ. The corresponding
ρ-balls {θ | ρ(θ) ≤ κ} are closed and nested convex sets containing the origin. Thus we
want to find the largest ρ-circle that still intersects S. The similarity with the geometry of
eigenvalue problems is obvious.

In our example we know that the global optimum of stress is at (1.3938468501, 0), and
if we project that point on the circle it becomes (1, 0). The corresponding optimal ρ is
1.3938468501. Figure 17 gives the contourplot for ρ, with the outer ρ-circle corresponding
with the optimal value. The fact that the optimal value contour is disjoint from the interior of
S is necessary and sufficient for global optimality (Dür, Horst, and Locatelli (1998)). Notice
the sharp corners in the contour plot, showing the non-diffentiability of ρ at the points where
d12(θ) = 0. We could also look for the minimum of ρ on the unit circle, which means finding
the largest ρ-circle that touches S on the inside. Inspecting figure 17 shows that this will be
a point where ρ is not differentiable, i.e. a point with d12(θ) = 0. This minimum ρ problem
does not make much sense in the context of multidimensional scaling, however, and it not
related directly to the minimization of stress.

21



 0.1 

 0.2 

 0.3 

 0.4 

 0.5 

 0.6 

 0.7 

 0.8 

 0.9 

 1 

 1.1 

 1.2 

 1.3 

 1.393847 

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 17: Contour Plot for Rho

5 A Final Look

Now that we know that the MDS problem is equivalent to maximizing ρ on the unit circle,
we can use nonlinear coordinates (θ1, θ2) = (sin ξ, cos ξ) to reduce the problem to a one-
dimensional unconstrained one in, say, “circle space”. Thus, with the same abuse of notation
as for stress, ρ(ξ) := ρ(sin ξ, cos ξ), and we have to maximize ρ over 0 ≤ ξ ≤ π.

In figure 18 we have plotted ρ as a function of η. There are blue vertical lines at the three
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local minima in coefficient space, red vertical lines at the stationary points, and a green
vertical line where d12(ξ) = 0. Note that in circle space stress has both multiple local minima
and multiple local maxima.
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Figure 18: One-dimensional Rho

From lemma 2 we see that the second derivative D2ρ(ξ) is equal to tr H(ξ)− ρ(ξ). For the
three local minima in coordinate space we find second derivatives -0.111634069, -0.5217315599,
-0.3150320881 in circle space, i.e. they are properly converted to local maxima. The two
stationary points in coordinate space have second derivatives 0.4143740166, 0.1148897778,
and are turned into local minima.

For more general cases, by the way, we know by Lyusternik and Schnirelmann (1934) that
a continuously differentiable even function on the unit sphere in Rn has at least n distinct
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pairs of stationary points.

6 Discussion

Although our results are based on a single small example, there are some general conclusions
we can draw.

Stess has no local maxima, except one at the origin. It has saddle points and non-global
minima. If we reparametrize configuration space by using linear combinations of a fixed
number of configurations we can “upgrade” some of the stationary point to local minima. If
we remove homogeneity from the problem by working on the unit ball that can upgrade even
more stationary points.

In comparing smacof with Newton we have found, not surprisingly, that Newton uses fewer
iterations but often converges to saddle points.

The finding that saddle points in configuration space can correspond with local minima in
coefficient space has an interesting implication for the smacof algorithm. We know that the
set of starting points from which smacof converges to a saddle point has measure zero, in
other words unless you start in a saddle point, you will almost certainly converge to a local
minimum (Lee et al. (2016)).

To illustrate this we repeat a calculation done first in De Leeuw (1988). Suppose we start
smacof iterations with the Y + .001 ∗ E, where E are random standard normals, and Y is
the triangle with center (which has loss function value 0.0669872981). smacof starts with a
loss function value for the perturbed Y of 0.066987868. It does not drop below 0.066 until
iteration 1346. But then it rather quickly converges in iteration 1388 to 0.0285954792, the
loss function value of the global minimum, four points in the corners of a square. On the
other hand, if we minimize σ(γ) over γ we have a non-zero probability of converging to the
local minimum in coefficient space at (0, 1), i.e. to Y .

This indicates, perhaps, that smacof must be used with a somewhat higher precision than
the default, and that testing for second derivative information is always a good idea, no
matter what space we are working in.

Minimizing stress over a plane spanned by two configurations may seem somewhat artificial
and limited. But think of the situation in which we use configurations X and Y = Dσ(X).
Or, equivalently, X and B(X)X. In that case minimizing over the plane means computing
the optimal step size of a gradient step or the optimum over-relaxation of smacof iterations,
a problem first addressed perhaps in De Leeuw and Heiser (1980). Or the case in which Y is
the Newton step, and optimizing over the plane is a stabilized version of Newton’s method.
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7 Appendix: Two Lemmas

Here we present two lemmas that describe the change of coordinates from configuration space
to coefficient space and then to circle space. The proofs, which are just simple computations,
are omitted.

Lemma 1: [On the Line] SupposeX and Y are n×mmatrices and f is a twice-differentiable
function on Rn×m. Define g(α, β) := f(αX + βY ). Then

Dg(α, β) =
[
tr X ′Df(αX + βY )
tr Y ′Df(αX + βY )

]
,

and

D2g(α, β) =
∑n

i=1
∑m
j=1

∑n
k=1

∑m
`=1 xijxk`

∂f2

∂zij∂zk`
(αX + βY ) ∑n

i=1
∑m
j=1

∑n
k=1

∑m
`=1 xijyk`

∂f2

∂zij∂zk`
(αX + βY )∑n

i=1
∑m
j=1

∑n
k=1

∑m
`=1 yijxk`

∂f2

∂zij∂zk`
(αX + βY ) ∑n

i=1
∑m
j=1

∑n
k=1

∑m
`=1 yijyk`

∂f2

∂zij∂zk`
(αX + βY )

 .
It is clear how this result generalizes to linear combinations of more than two matrices.

Lemma 2: [On the Circle] If f is a twice-differentiable function of two variables and
g(x) = f(sin(x), cos(x)) then

Dg(x) = y′Df(z),
with z := (sin(x), cos(x)) and y := (cos(x),−sin(x)), and

D2g(x) = y′D2f(z)y − z′Df(z).

More generally, if a differentiable function f on the unit sphere has a stationary point at θ
then θ′θ = 1 and there is a multiplier λ such that Df(θ) = λθ. If f is homogeneous of degree
one then θ′Df(θ) = f(θ) and thus at a stationary point λ = f(θ). If the function is twice
differentiable and the stationary point is a local maximum then in addition ν ′D2f(θ)ν ≤ λ
for all ν ′ν = 1 and ν ′θ = 0. For a norm, i.e. a homogeneous convex f , this says equivalently
that the largest eigenvalue of D2f(θ) is less than or equal to f(θ). Note that the second order
necessary conditions for a local maximum become sufficient if the inequality is strict.

8 Appendix: Code

bmat <- function (a, b, x, y, delta) {
bm <- matrix (0, 2, 2)
hm <- matrix (0, 2, 2)
z <- c(a, b)
for (i in 1:4) {

for (j in 1:4) {
if (i == j) next
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uij <- uu (i, j, x, y)
uz <- drop (uij %*% z)
dij <- sqrt (sum (uij * outer (z, z)))
bm <- bm + (delta[i,j] / dij) * uij
hm <- hm + (delta[i,j] / dij) * (uij - outer (uz, uz) / sum (z * uz))

}
}
return (list (b = bm, h = hm))

}

stress <- function (a, b, x, y, delta) {
z <- c (a, b)
bm <- bmat (a, b, x, y, delta)$b
return (1 + sum(z ^ 2) / 2 - sum (z * bm %*% z))

}

rho <- function (a, b, x, y, delta) {
z <- c (a, b)
bm <- bmat (a, b, x, y, delta)$b
return (sum (z * bm %*% z))

}

vv <- function (i, j, x, y) {
a <- matrix (0, 2, 2)
a[1, 1] <- sum ((x[i, ]- x[j,]) ^ 2)
a[2, 2] <- sum ((y[i, ]- y[j,]) ^ 2)
a[1, 2] <- a[2, 1] <- sum ((x[i, ]- x[j,]) * (y[i, ]- y[j, ]))
return (a)

}

uu <- function (i, j, x, y) {
n <- nrow (x)
asum <- 2 * n * matrix (c (sum(x ^ 2), sum (x * y), sum (x * y), sum (y ^ 2)), 2, 2)
csum <- solve (chol (asum))
return (t(csum) %*% vv (i, j, x, y) %*% csum)

}

smacof <- function (a, b, x, y, delta, eps = 1e-10, itmax = 1000, verbose = TRUE) {
zold <- c(a,b)
bold <- bmat (a, b, x, y, delta)$b
fold <- 1 + sum(zold ^ 2) / 2 - sum (zold * bold %*% zold)
itel <- 1
repeat {

znew <- drop (bold %*% zold)
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bhmt <- bmat (znew[1], znew[2], x, y, delta)
bnew <- bhmt$b
fnew <- 1 + sum(znew ^ 2) / 2 - sum (znew * bnew %*% znew)
if (verbose) {

cat (
formatC (itel, width = 4, format = "d"),
formatC (

fold,
digits = 10,
width = 13,
format = "f"

),
formatC (

fnew,
digits = 10,
width = 13,
format = "f"

),
"\n"

)
}
if ((itel == itmax) || (fold - fnew) < eps)

break ()
itel <- itel + 1
fold <- fnew
zold <- znew
bold <- bnew

}
return (list (stress = fnew, theta = znew, itel= itel, b = bnew, g = znew - bnew %*% znew, h = diag(2) - bhmt$h))

}

newton <- function (a, b, x, y, delta, eps = 1e-10, itmax = 1000, verbose = TRUE) {
zold <- c(a,b)
bhmt <- bmat (a, b, x, y, delta)
bold <- bhmt$b
hold <- diag(2) - bhmt$h
fold <- 1 + sum(zold ^ 2) / 2 - sum (zold * bold %*% zold)
itel <- 1
repeat {

znew <- drop (solve (hold, bold %*% zold))
bhmt <- bmat (znew[1], znew[2], x, y, delta)
bnew <- bhmt$b
hnew <- diag(nrow(bnew)) - bhmt$h
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fnew <- 1 + sum(znew ^ 2) / 2 - sum (znew * bnew %*% znew)
if (verbose) {

cat (
formatC (itel, width = 4, format = "d"),
formatC (

fold,
digits = 10,
width = 13,
format = "f"

),
formatC (

fnew,
digits = 10,
width = 13,
format = "f"

),
"\n"

)
}
if ((itel == itmax) || abs (fold - fnew) < eps)

break ()
itel <- itel + 1
fold <- fnew
zold <- znew
bold <- bnew
hold <- hnew

}
return (list (stress = fnew, theta = znew, itel = itel, b = bnew, g = znew - bnew %*% znew, h = hnew))

}

mprint <- function (x, d = 2, w = 5) {
print (noquote (formatC (x, di = d, wi = w, fo = "f")))

}
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