
Multidimensional Scaling with Distance
Bounds
Jan de Leeuw

Version 12, January 16, 2017

Abstract

We give an algorithm, with R code, to minimize the multidimensional scaling stress
loss function under the condition that some or all of the fitted distances are between
given positive upper and lower bounds. This paper combines theory, algorithms, code,
and results of De Leeuw (2017b) and De Leeuw (2017a).

Contents
1 Introduction 2

1.1 Simplifying stress . 2
1.2 Smacof Notation and Theory . 3

2 Some Majorization Theory 3
2.1 Fixed Points . 4

3 MDS with Distance Bounds 5

4 Software 5

5 Examples 6
5.1 Equidistances . 6
5.2 Dutch Political Parties 1967 . 9

6 Appendix: Code 12
6.1 updown.R . 12
6.2 auxilary.R . 12
6.3 mdsUtils.R . 14
6.4 smacofUpDown.R . 15

References 18

Note: This is a working paper which will be expanded/updated frequently. All suggestions
for improvement are welcome. The directory gifi.stat.ucla.edu/updown has a pdf version, the
complete Rmd file with all code chunks, the bib file, and the R source code.

1

http://gifi.stat.ucla.edu/updown

1 Introduction

In this paper we study the minimization of stress, defined as

stress(X) := 1
4

n∑
i=1

n∑
j=1

wij(δij − dij(X))2

over n× p configuration matrices X. Here W = {wij} and ∆ = {δij} are given symmetric,
hollow, and non-negative matrices of, respectively, weights and dissimilarities. The dij(X)
are Euclidean distances between the points with coordinates in the rows of X. Thus

d2
ij(X) := (xi − xj)′(xi − xj) = (ei − ej)′XX ′(ei − ej) = tr X ′AijX.

Here ei and ej are unit vectors, with all elements equal to zero except for the single element i
or j, which is equal to one. Also Aij := (ei − ej)(ei − ej)′.

The problem of minimizing stress is well-studied (see, for example, Borg and Groenen (2005)).
In this paper we analyze the problem of minimizing stress over all configurations X for
which αij ≤ dij(X) ≤ βij for some or all pairs i, j, where the αij and βij are given bounds
satisfying 0 ≤ αij < βij ≤ +∞. We suppose the constraints are strongly consistent, i.e. there
is at least one n× p configuration matrix X such that αij < dij(X) < βij.

These optimization problems are non-standard in various ways. Although the set of X such
that dij(X) ≤ βij is convex, the constraints dij(X) ≥ αij define a reverse convex set (Meyer
(1970)) in configuration space. The loss funcion stress is neither convex nor concave. We can,
however, use basic smacof theory (De Leeuw (1977)) to majorize stress by a convex quadratic
and to majorize the constraints by linear or convex quadratic functions. Majorization can
be used to define a simple iterative algorithm. In each iteration we majorize stress and the
constraints, and then minimize the convex quadratic majorizer over configurations satisfying
the majorized constraints using quadratic programming with quadratic constraints or QPQC
(De Leeuw (2017c)). Compute a new majorization at the minimizer of the majorized problem,
and so on. These are the two steps in the majorization or MM approach to optimization (De
Leeuw (1994), Lange (2016)).

1.1 Simplifying stress

A simplified expression for stress, first used in De Leeuw (1993), is

stress(x) = 1
2

K∑
k=1

wk(δk −
√
x′Akx)2.

We have put the elements below the diagonal of W and ∆ in a vector of length 1
2n(n− 1).

Also x := vec(X) and the Ak are the direct sums of p copies of the corresponding Aij. Now
expand the square, and assume without loss of generality that 1

2
∑K

k=1 wkδ
2
k = 1. Then

stress(x) = 1−
K∑

k=1
wkδk

√
x′Akx+ 1

2x
′V x,

2

with V := ∑K
k=1 wkAk.

Suppose V = KΛ2K ′ is a complete eigen-decomposition of V . Some care is needed to handle
the fact that V is singular, but under the assumption of irreducibility (De Leeuw (1977))
this is easily taken care of. Change variables with z = Λ 1

2K ′x. Then

stress(z) = 1−
K∑

k=1
wkδk

√
z′Ãkz + 1

2z
′z,

with Ãk = Λ− 1
2K ′AkKΛ− 1

2 , so that ∑K
k=1 wkÃk = I.

1.2 Smacof Notation and Theory

We have see in the previous section that we can write

stress(x) = 1− ρ(x) + 1
2x
′x,

where
ρ(x) :=

K∑
k=1

wkδkdk(x),

with distances dk(x) :=
√
x′Akx, and the Ak positive semi-definite matrices that add up to

the identity. By Cauchy-Schwarz,

ρ(x) = x′B(x)x ≥ x′B(y)y,

where
B(x) :=

K∑
k=1

wk
δk

dk(x)Ak.

If we define the Guttman transform if x as Γ(x) := B(x)x, then for all x

(stress)(x) = 1− x′Γ(x) + 1
2x
′x = (1− 1

2Γ(x)′Γ(x)) + 1
2(x− Γ(x))′(x− Γ(x)),

and for all x, y

(stress) ≤ 1− x′Γ(y) + 1
2x
′x = (1− 1

2Γ(y)′Γ(y)) + 1
2(x− Γ(y)′(x− Γ(y)),

In this notation a smacof iteration is x(k+1) = Γ(x(k)).

2 Some Majorization Theory

Suppose the problem we are interested in is to minimize a real-valued f0 over all x ∈ Rn that
satisfy fj(x) ≤ 0 for all j = 1, · · · ,m. We call this problem P .

3

Now suppose gj : Rn ⊗ Rn → R majorizes fj, i.e.

fj(x) ≤ gj(x, y) for all x, y ∈ Rn,

fj(y) = gj(y, y) for all y ∈ Rn.

To simplify matters we suppose all fj and gj are continuously differentiable, and all gj are
convex in their first argument. Define problem Pk as the problem of minimizing g0(x, x(k−1))
over the x ∈ Rn that satisfy gj(x, x(k−1)) ≤ 0. Define a sequence x(k) with x(0) feasible for P ,
and with x(k) for k ≥ 1 a solution of Pk.

Theorem 1: [Convergence]

1. x(k) is feasible for P for all k ≥ 1.
2. f0(x(k)) ≤ f0(x(k−1)) for all k ≥ 1.

Proof: For the first part fj(x(k)) ≤ gj(x(k), x(k−1)) by majorization, and gj(x(k), x(k−1)) ≤ 0
by feasibility for Pk. For the second part f0(x(k)) ≤ g0(x(k), x(k−1)) by majorization. Because
x(k) solves Pk we have g0(x(k), x(k−1)) ≤ g0(x(k−1), x(k−1)) if x(k−1) is feasible for Pk, i.e. if
gj(x(k−1), x(k−1)) ≤ 0. But gj(x(k−1), x(k−1)) = fj(x(k−1)) ≤ 0 by the first part of the theorem.
QED

2.1 Fixed Points

By theorem 1 we have a sequence of points with decreasing function values that are all
feasible for P. We can say a bit more about accumulation points of this sequence. Define
P(y) as the convex problem of minimizing g0(x, y) over x ∈ Rn and gj(x, y) ≤ 0.

Theorem 2: [Necessary]

If x solves P(x) then x satisfies the first order necessary conditions for a local minimum of P .

Proof: The necessary and sufficient conditions for x to be a minimum of P(y) are that there
exists λ ≥ 0 such that

D1g0(x, y) +
m∑

j=1
λjD1gj(x, y) = 0,

with in addition gj(x, y) ≤ 0 and λjgj(x, y) = 0.

The first order necessary conditions for x to be a local minimum of P are that there exists
λ ≥ 0 such that

Df0(x) +
m∑

j=1
λjDfj(x) = 0,

with in addition fj(x) ≤ 0 and λjfj(x) = 0.

But if the fj and gj are differentiable, we know from majorization theory (De Leeuw (2016),
Lange (2016)) that Dfj(x) = D1gj(x, x) for all x.

4

QED

It follows that if we define F(y) as the solution of P(y) then fixed points of F are local
minimizers of P . Thus if x(k) converges to a fixed point of F , it converges to a local minimizer
of P , and f0(x(k)) converges to a local minimum.

3 MDS with Distance Bounds

There are two types of constraints. The first are
√
x′Akx ≤ βk, which we transform simply to

x′Akx ≤ β2
k (1)

and otherwise leave undisturbed. No majorization is required.

The second set of constraints is
√
x′Akx ≥ αk or αk −

√
x′Akx ≤ 0. We majorize at x(k−1),

using Cauchy-Schwarz, to

αk −
1

dk(x(k−1))x
′Akx

(k−1) ≤ 0 (2)

Thus the QPQC problem we have to solve in each bounded smacof iteration, a.k.a. problem
Pk, is minimization of the quadratic 1− x′Γ(x(k−1)) + 1

2x
′x over x satisfying the quadratic

constraints (1) and the linear constraints (2).

4 Software

Minimizing a convex quadratic under convex quadratic constraints has been implemented in
the R function qpqc, described in De Leeuw (2017c). It dualizes the problem and then uses
the nnnewtin function for Newton’s method with non-negativity constraints. We apply qpqc
to solve our problems Pk, using the fact that the linear constraints (2) are just quadratic
constraints with a zero quadratic component.

The smacofUpDown function has two arguments without default values, a vector delta of
length 1

2n(n− 1) with dissimilarities (lower-diagonal, columnwise, same ordering as a dist
object) and an n× p matrix xini with an initial configuration.
args(smacofUpDown)

function (delta, xini, w = rep(1, length(delta)), bndlw = rep(0,
length(delta)), bndup = rep(Inf, length(delta)), itmax = 1000,
eps = 1e-10, verbose = FALSE)
NULL

5

The arguments bndlw and bndup are vectors of length 1
2n(n− 1), with default values 0 and

+∞. Thus, by default, smacofUpDown computes an unconstrained weighted least squares
multidimensional scaling solution, where the weights in w are by default all equal to +1.

There is no default value for xini, and the user must make sure that the distances of the
initial configuration are between the bounds (are feasible). This is easy enough to do if
there are only lower bounds (take any configuration and make it big enough) or only uppper
bounds (make it small enough). If there are both upper and lower bounds then feasibility
should be checked, because smacofUpDown will refuse to start if the initial configuration has
any infeasible distances.

5 Examples

5.1 Equidistances

Our first example has n = 10 with all δij equal. The optimal smacof solution in two
dimensions needs 131 iterations to arrive at stress 0.1098799783. We reanalyze the data with
the constraint that the distance between the first point and all nine others is at least one.
The algorithm incorporating these bounds, implemented in the function smacofAbove, uses
156 iterations and finds stress 0.1340105193. The two configurations are in figure 1. There
are five active constraints, i.e. distances equal to one, indicated by lines in the plot.

−0.6 −0.2 0.2 0.6

−
0.

6
−

0.
2

0.
2

0.
6

dim 1

di
m

 2

1

2

3

4

5

6

7

8

9

10

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5

dim 1

di
m

 2

1

2

3

4

5

6

7

8

9

10

Figure 1: Equidistance Data, Unconstrained Left, Lower Bounds Right

In the second analysis, now using eight objects with equal dissimilarties, we require dij(X) ≥ 1
for all i, j with |i− j| = 1, and dij(X) ≤ 2 for all i, j with |i− j| = 2.

In the unconstrained case we find stress equal to 0.0973520592 after 132 iterations, in the
constrained case we find 0.1183956861 after 357 iterations. The lower bound constraints are

6

all active, which means the distances between successive points are all one (indicated with
lines in figure 2. The upper bound constraints are all inactive.

−0.6 −0.2 0.2 0.6

−
0.

6
−

0.
2

0.
2

0.
6

dim 1

di
m

 2

1

2

3

4

5

6

7

8

−0.6 −0.2 0.2 0.6

−
0.

5
0.

0
0.

5

dim 1

di
m

 2 1

2

3

4

5

67

8

Figure 2: Equidistance Data, Unconstrained Left, Lower Bounds Right

So far we have assumed αij < βij for all i, j. It is possible, however, to let αij = βij, which
means we require dij(X) = αij = βij. Note the complete set of constraints still needs to be
consistent, and the initial configuration must still be feasible. In our example we require all
seven distances between successive points to be equal to one.

Our algorithm in this case becomes extremely slow. It stops at the upper bound of 2000
iterations, with stress 0.145422896. Of course all constraints are now active. The Lagrange
multipliers are large, serving as penalty parameters to force the equality constraints.

[1] 607.209037 798.640263 184.410120 470.471412 837.258144 684.253342
[7] 342.484954 607.726977 799.263569 184.916274 470.878355 838.697106
[13] 685.017712 342.476621

7

−0.6 −0.2 0.2 0.4 0.6

−
0.

5
0.

0
0.

5

dim 1

di
m

 2

1

2

3

4

5

6

7

8

Figure 3: Equidistance Data, Distances Constrained to One

Note, however, that the previous analysis where we merly required dij(X) ≥ 1 for |i− j| = 1
produced a solution feasible for the current problem with stress equal to 0.1183956861.
This makes it interesting see what goes on if we increase the upper bound of the number of
iterations even more, say, to 10000.

We now find stress 0.1016650356 after 4638 iterations. The Lagrange multipliers for this
solution are much smaller (first seven correspond with upper bounds, second seven with
lower bounds). What basically happens is that for each (i, j) with |i − j| = 1 either the
upper or the lower constraint is seen to be violated and gets a zero Lagrange multiplier. The
corresponding Lagrange multiplier for the corresponding other constraint is positive, because
it is interpreted as being satisfied. This is a consequence of using floating point with limited
precision, and the difference between αij = 0.99 · · · and βij = 1.00 · · ·.

[1] 0.1769885825 0.0000000000 0.2256740368 0.0000000001 0.0000005800
[6] 0.0000000012 0.0707712910

[1] 0.0000094723 0.2413717195 0.0000020656 0.0233523251 0.1287322429
[6] 0.1247717131 0.0000000002

The successive distances are

[1] 0.9999999397 1.0000000032 1.0000000368 1.0000000221 0.9999999739
[6] 0.9999999647 0.9999999492

8

−0.6 −0.2 0.2 0.4 0.6

−
0.

6
−

0.
2

0.
2

0.
4

0.
6

dim 1

di
m

 2

1

2

3

4

5

6

7

8

Figure 4: Equidistance Data, Distances Constrained to One

5.2 Dutch Political Parties 1967

As the next illustration we use data from De Gruijter (1967), with average dissimilarity
judgments between Dutch political parties in 1967. The data are

KVP PvdA VVD ARP CHU CPN PSP BP
PvdA 5.63
VVD 5.27 6.72
ARP 4.60 5.64 5.46
CHU 4.80 6.22 4.97 3.20
CPN 7.54 5.12 8.13 7.84 7.80
PSP 6.73 4.59 7.55 6.73 7.08 4.08
BP 7.18 7.22 6.90 7.28 6.96 6.34 6.88
D66 6.17 5.47 4.67 6.13 6.04 7.42 6.36 7.36

First, three different but comparable anlyses are done. The first does not impose restriction,
the second is MDS from below, which requires dij(X) ≤ δij for all i, j. And the third is MDS
from above, for which dij(X) ≥ δij for all i, j. The configurations are quite similar, except for
the position of D’66, which at the time was a novelty in Dutch politics. The value of stress
at the solutions is, respectively, 0.044603386, 0.0752702106, and 0.280130691.

9

−4 −2 0 2 4

−
4

−
2

0
2

dim 1

di
m

 2

KVP

PvdA

VVD

ARP

CHU CPN

PSP

BP

D66

4 5 6 7 8

2
4

6
8

dissimilarities

di
st

an
ce

s

Figure 5: De Gruijter Data, Unconstrained Solution

−2 0 2 4

−
4

−
2

0
1

2
3

dim 1

di
m

 2

KVP

PvdA

VVD

ARP

CHU
CPN

PSP

BP

D66

4 5 6 7 8

2
3

4
5

6
7

8

dissimilarities

di
st

an
ce

s

Figure 6: De Gruijter Data, MDS from Below

10

−6 −2 2 4 6

−
6

−
2

0
2

4
6

dim 1

di
m

 2
KVP

PvdA

VVD

ARP

CHU
CPN

PSP

BP

D66

4 5 6 7 8

4
6

8
10

12

dissimilarities

di
st

an
ce

s

Figure 7: De Gruijter Data, MDS from Above

The same data are used in the next analysis, which requires 2 ≤ dij(X) ≤ 8 for all i, j. We
converge to stress 0.0668519523 in 119 iterations. There are eight active constrains, with
four distances equal to the lower bound and four equal to the upper bound. The configuration
in figure 8 shows the distances equal to the lower bound in blue and those equal to the upper
bound in red. The active constraints are also clearly visible in the Shepard plot in figure 8.

−4 −2 0 2 4

−
4

−
2

0
2

dim 1

di
m

 2

KVP

PvdA

VVD

ARP

CHU

CPN

PSP

BP

D66

4 5 6 7 8

2
3

4
5

6
7

8

dissimilarities

di
st

an
ce

s

Figure 8: De Gruijter Data, Distance Intervals

11

6 Appendix: Code

6.1 updown.R

suppressPackageStartupMessages (library (mgcv, quietly = TRUE))
suppressPackageStartupMessages (library (MASS, quietly = TRUE))
suppressPackageStartupMessages (library (lsei, quietly = TRUE))
suppressPackageStartupMessages (library (numDeriv, quietly = TRUE))
source("auxilary.R")
source("mdsUtils.R")
source("nnnewton.R")
source("qpqc.R")
source("smacofUpDown.R")

6.2 auxilary.R

mprint <- function (x,
d = 6,
w = 8,
f = "") {

print (noquote (formatC (
x,
di = d,
wi = w,
fo = "f",
flag = f

)))
}

directSum <- function (x) {
m <- length (x)
nr <- sum (sapply (x, nrow))
nc <- sum (sapply (x, ncol))
z <- matrix (0, nr, nc)
kr <- 0
kc <- 0
for (i in 1:m) {

ir <- nrow (x[[i]])
ic <- ncol (x[[i]])
z[kr + (1:ir), kc + (1:ic)] <- x[[i]]
kr <- kr + ir
kc <- kc + ic

12

}
return (z)

}

repList <- function(x, n) {
z <- list()
for (i in 1:n)

z <- c(z, list(x))
return(z)

}

shapeMe <- function (x) {
m <- length (x)
n <- (1 + sqrt (1 + 8 * m)) / 2
d <- matrix (0, n, n)
k <- 1
for (i in 2:n) {

for (j in 1:(i - 1)) {
d[i, j] <- d[j, i] <- x[k]
k <- k + 1

}
}
return (d)

}

symmetricFromTriangle <- function (x, lower = TRUE, diagonal = TRUE) {
k <- length (x)
if (diagonal)

n <- (sqrt (1 + 8 * k) - 1) / 2
else

n <- (sqrt (1 + 8 * k) + 1) / 2
if (n != as.integer (n))

stop ("input error")
nn <- 1:n
if (diagonal && lower)

m <- outer (nn, nn, ">=")
if (diagonal && (!lower))

m <- outer (nn, nn, "<=")
if ((!diagonal) && lower)

m <- outer (nn, nn, ">")
if ((!diagonal) && (!lower))

m <- outer (nn, nn, "<")
b <- matrix (0, n, n)
b[m] <- x

13

b <- b + t(b)
if (diagonal)

diag (b) <- diag(b) / 2
return (b)

}

triangleFromSymmetric <- function (x, lower = TRUE, diagonal = TRUE) {
n <- ncol (x)
nn <- 1:n
if (diagonal && lower)

m <- outer (nn, nn, ">=")
if (diagonal && (!lower))

m <- outer (nn, nn, "<=")
if ((!diagonal) && lower)

m <- outer (nn, nn, ">")
if ((!diagonal) && (!lower))

m <- outer (nn, nn, "<")
return (x[m])

}

6.3 mdsUtils.R

library (mgcv)

torgerson <- function (delta, p = 2) {
z <- slanczos(-doubleCenter((delta ^ 2) / 2), p)
w <- matrix (0, p, p)
v <- pmax(z$values, 0)
diag (w) <- sqrt (v)
return(z$vectors %*% w)

}

basisPrep <- function (n, p, w) {
m <- n * (n - 1) / 2
v <- -symmetricFromTriangle (w, diagonal = FALSE)
diag (v) <- -rowSums(v)
ev <- eigen (v)
eval <- ev$values[1:(n - 1)]
evec <- ev$vectors[, 1:(n - 1)]
z <- evec %*% diag (1 / sqrt (eval))
a <- array (0, c(n - 1, n - 1, m))
k <- 1

14

for (j in 1:(n-1)) {
for (i in (j+1):n) {

dif <- z[i,] - z[j,]
a [, , k] <- outer (dif, dif)
k <- k + 1

}
}
return (list (z = z, a = a))

}

center <- function (x) {
return (apply (x, 2, function (z) z - mean (z)))

}

doubleCenter <- function (x) {
n <- nrow (x)
j <- diag(n) - (1 / n)
return (j %*% x %*% j)

}

squareDist <- function (x) {
d <- diag (x)
return (outer (d, d, "+") - 2 * x)

}

6.4 smacofUpDown.R

smacofUpDown <-
function (delta,

xini,
w = rep (1, length (delta)),
bndlw = rep (0, length (delta)),
bndup = rep (Inf, length (delta)),
itmax = 1000,
eps = 1e-10,
verbose = FALSE) {

m <- length (delta)
p <- dim (xini)[2]
n <- (1 + sqrt (1 + 8 * m)) / 2
dini <- as.vector (dist (xini))
if (any (dini > bndup) || any (dini < bndlw))

stop ("initial estimate not feasible")
wndup <- which (bndup < Inf)

15

lup <- length (wndup)
wndlw <- which (bndlw > 0)
llw <- length (wndlw)
ltt <- lup + llw
r <- p * (n - 1)
yold <- rep (0, ltt)
h <- basisPrep (n, p, w)
xold <- rep (0, r)
for (s in 1:p) {

k <- (s - 1) * (n - 1) + 1:(n - 1)
xold[k] <-

crossprod (h$z, xini[, s]) / diag (crossprod (h$z))
}
d <- rep (0, m)
itel <- 1
sold <- Inf
ssq <- sum (w * delta ^ 2)
repeat {

xmid <- rep (0, r)
xx <- matrix (xold, n - 1, p)
t <- 1
bcomp <- matrix (0, r, ltt + 1)
for (k in 1:m) {

ak <- h$a[, , k]
ax <- ak %*% xx
d[k] <- sqrt (sum (xx * ax))
if (!is.na (match (k, wndlw))) {

bcomp[, 1 + lup + t] <- -ax / d[k]
t <- t + 1

}
xmid <- xmid + w[k] * (delta[k] / d[k]) * ax

}
if (ltt > 0) {

ccomp <- c(c(ssq,-bndup[wndup] ^ 2) / 2, bndlw[wndlw])
bcomp[, 1] <- -xmid
acomp <- array (0, c(r, r, ltt + 1))
acomp[, , 1] <- diag (r)
t <- 1
for (k in wndup) {

ak <- directSum (repList (h$a[, , k], p))
acomp[, , t + 1] <- ak
t <- t + 1

}
v <- qpqc (yold, acomp, bcomp, ccomp, verbose = FALSE)

16

snew <- 2 * v$f / ssq
xnew <- v$xmin
ynew <- v$multipliers
cons <- v$constraints

}
else {

xnew <- xmid
snew <- sum (w * (delta - d) ^ 2) / ssq
ynew <- NULL
cons <- NULL

}
if (verbose)

cat(
"Iteration: ",
formatC (itel, width = 3, format = "d"),
"sold: ",
formatC (

sold,
digits = 8,
width = 12,
format = "f"

),
"snew: ",
formatC (

snew,
digits = 8,
width = 12,
format = "f"

),
"\n"

)
if ((itel == itmax) || ((sold - snew) < eps))

break
xold <- xnew
sold <- snew
yold <- ynew
itel <- itel + 1

}
xconf <- matrix (0, n, p)
for (s in 1:p) {

k <- (s - 1) * (n - 1) + 1:(n - 1)
xconf[, s] <- h$z %*% xnew[k]

}
return (

17

list (
delta = delta,
dist = d,
x = xconf,
multipliers = ynew,
constraints = cons,
itel = itel,
stress = sum (w * (delta - d) ^ 2) / ssq

)
)

}

References

Borg, I., and P.J.F. Groenen. 2005. Modern Multidimensional Scaling: Theory and Applica-
tions. Second. Springer.

De Gruijter, D.N.M. 1967. “The Cognitive Structure of Dutch Political Parties in 1966.”
Report E019-67. Psychological Institute, University of Leiden.

De Leeuw, J. 1977. “Applications of Convex Analysis to Multidimensional Scaling.” In
Recent Developments in Statistics, edited by J.R. Barra, F. Brodeau, G. Romier, and B.
Van Cutsem, 133–45. Amsterdam, The Netherlands: North Holland Publishing Company.
http://www.stat.ucla.edu/~deleeuw/janspubs/1977/chapters/deleeuw_C_77.pdf.

———. 1993. “Fitting Distances by Least Squares.” Preprint Series 130. Los Angeles, CA:
UCLA Department of Statistics. http://www.stat.ucla.edu/~deleeuw/janspubs/1993/reports/
deleeuw_R_93c.pdf.

———. 1994. “Block Relaxation Algorithms in Statistics.” In Information Systems and Data
Analysis, edited by H.H. Bock, W. Lenski, and M.M. Richter, 308–24. Berlin: Springer Verlag.
http://www.stat.ucla.edu/~deleeuw/janspubs/1994/chapters/deleeuw_C_94c.pdf.

———. 2016. Block Relaxation Methods in Statistics. Bookdown. https://bookdown.org/
jandeleeuw6/bras/.

———. 2017a. “Multidimensional Scaling with Lower Bounds.” doi:10.13140/RG.2.2.35938.73927.

———. 2017b. “Multidimensional Scaling with Upper Bounds.” doi:10.13140/RG.2.2.13420.56960.

———. 2017c. “Quadratic Programming with Quadratic Constraints.” doi:10.13140/RG.2.2.20763.87841.

Lange, K. 2016. MM Optimization Algorithms. SIAM.

Meyer, R. 1970. “The Validity of a Family of Optimization Methods.” SIAM Journal Control
8 (1): 41–54.

18

http://www.stat.ucla.edu/~deleeuw/janspubs/1977/chapters/deleeuw_C_77.pdf
http://www.stat.ucla.edu/~deleeuw/janspubs/1993/reports/deleeuw_R_93c.pdf
http://www.stat.ucla.edu/~deleeuw/janspubs/1993/reports/deleeuw_R_93c.pdf
http://www.stat.ucla.edu/~deleeuw/janspubs/1994/chapters/deleeuw_C_94c.pdf
https://bookdown.org/jandeleeuw6/bras/
https://bookdown.org/jandeleeuw6/bras/
https://doi.org/10.13140/RG.2.2.35938.73927
https://doi.org/10.13140/RG.2.2.13420.56960
https://doi.org/10.13140/RG.2.2.20763.87841

	Introduction
	Simplifying stress
	Smacof Notation and Theory

	Some Majorization Theory
	Fixed Points

	MDS with Distance Bounds
	Software
	Examples
	Equidistances
	Dutch Political Parties 1967

	Appendix: Code
	updown.R
	auxilary.R
	mdsUtils.R
	smacofUpDown.R

	References

